Abstract
Let A=(A11A12A21A22)∈Mn, where A11∈Mmwith m≤n/2, be such that the numerical range of A lies in the set {eiφz∈C:|z|≤(≤z)tanα}, for some φ∈[0, 2π) and α∈[0, π/2). We obtain the optimal containment region for the generalized eigenvalue λ satisfyingλ(A1100A22)x=(0A12A210)xfor some nonzero x∈Cn, and the optimal eigenvalue containment region of the matrix Im-A11-1A12A22-1A21 in case A11and A22are invertible. From this result, one can show |det(A)|≤sec2m(α)×|det(A11)det(A22)|. In particular, if A is an accretive-dissipative matrix, then |det(A)|≤2m|det(A11)det(A22)|. These affirm some conjectures of Drury and Lin.
Original language | English |
---|---|
Pages (from-to) | 487-491 |
Number of pages | 5 |
Journal | Journal of Mathematical Analysis and Applications |
Volume | 410 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Feb 2014 |
Keywords
- Accretive-dissipative matrix
- Determinantal inequality
- Eigenvalues
- Numerical ranges
ASJC Scopus subject areas
- Analysis
- Applied Mathematics