Abstract
A new method, namely Cross fuzzy entropy (C-FuzzyEn) analysis, that could enable the measurement of the synchrony or similarity of patterns between two distinct signals, was presented in this study. Tests on simulated data sets showed that C-FuzzyEn was superior to the conventional cross sample entropy (C-SampEn) in several aspects, including giving entropy definition in case of small parameters, better relative consistency, and less dependence on record length. The proposed C-FuzzyEn was then applied for the analysis of simultaneously recorded electromyography (EMG) and mechanomyography (MMG) signals during sustained isometric contraction for monitoring local muscle fatigue. The results showed that the C-FuzzyEn of EMG-MMG decreased significantly during the development of muscle fatigue. The time-decrease trend of C-FuzzyEn is similar to the mean frequency (MNF) of EMG, the commonly used muscle fatigue indicator.
Original language | English |
---|---|
Title of host publication | Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society |
Subtitle of host publication | Engineering the Future of Biomedicine, EMBC 2009 |
Publisher | IEEE Computer Society |
Pages | 2971-2974 |
Number of pages | 4 |
ISBN (Print) | 9781424432967 |
DOIs | |
Publication status | Published - 1 Jan 2009 |
Event | 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States Duration: 2 Sept 2009 → 6 Sept 2009 |
Conference
Conference | 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 |
---|---|
Country/Territory | United States |
City | Minneapolis, MN |
Period | 2/09/09 → 6/09/09 |
ASJC Scopus subject areas
- Cell Biology
- Developmental Biology
- Biomedical Engineering
- General Medicine