Detection of Abrupt Change in Channel Covariance Matrix for Multi-Antenna Communication

Runnan Liu, Liang Liu, Dazhi He, Wenjun Zhang, Erik G. Larsson

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

2 Citations (Scopus)

Abstract

The knowledge of channel covariance matrices is of paramount importance to the estimation of instantaneous channels and the design of beamforming vectors in multi-antenna systems. In practice, an abrupt change in channel covariance matrices may occur due to the change in the environment and the user location. Although several works have proposed efficient algorithms to estimate the channel covariance matrices after any change occurs, how to detect such a change accurately and quickly is still an open problem in the literature. In this paper, we focus on channel covariance change detection between a multi-antenna base station (BS) and a single-antenna user equipment (UE). To provide theoretical performance limit, we first propose a genie-aided change detector based on the log-likelihood ratio (LLR) test assuming the channel covariance matrix after change is known, and characterize the corresponding missed detection and false alarm probabilities. Then, this paper considers the practical case where the channel covariance matrix after change is unknown. The maximum likelihood (ML) estimation technique is used to predict the covariance matrix based on the received pilot signals over a certain number of coherence blocks, building upon which the LLR-based change detector is employed. Numerical results show that our proposed scheme can detect the change with low error probability even when the number of channel samples is small such that the estimation of the covariance matrix is not that accurate. This result verifies the possibility to detect the channel covariance change both accurately and quickly in practice.

Original languageEnglish
Title of host publication2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-6
Number of pages6
ISBN (Electronic)9781728181042
DOIs
Publication statusPublished - Dec 2021
Event2021 IEEE Global Communications Conference, GLOBECOM 2021 - Madrid, Spain
Duration: 7 Dec 202111 Dec 2021

Publication series

Name2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings

Conference

Conference2021 IEEE Global Communications Conference, GLOBECOM 2021
Country/TerritorySpain
CityMadrid
Period7/12/2111/12/21

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Networks and Communications
  • Computer Science Applications
  • Hardware and Architecture
  • Information Systems and Management
  • Safety, Risk, Reliability and Quality
  • Health Informatics

Fingerprint

Dive into the research topics of 'Detection of Abrupt Change in Channel Covariance Matrix for Multi-Antenna Communication'. Together they form a unique fingerprint.

Cite this