Abstract
Emotional distress, such as depression, has become a significant problem in modern societies. Previous research has proposed machine learning models to automatically detect emotional distress from online social media texts. However, these approaches have not effectively incorporated domain knowledge into state-of-the-art architectures and have not been tested on writing in a more private context. This paper discusses our proposed plan to address these two research gaps. First, we will design and evaluate a deep learning model that incorporates domain knowledge to detect emotional distress from texts. Second, we will collect texts from both social media platforms and private diary writing to study the differences in the classification performance of the proposed model on these texts.
Original language | English |
---|---|
Title of host publication | 27th Annual Americas Conference on Information Systems, AMCIS 2021 |
Publisher | Association for Information Systems |
ISBN (Electronic) | 9781733632584 |
Publication status | Published - Aug 2021 |
Event | 27th Annual Americas Conference on Information Systems, AMCIS 2021 - Virtual, Online Duration: 9 Aug 2021 → 13 Aug 2021 |
Publication series
Name | 27th Annual Americas Conference on Information Systems, AMCIS 2021 |
---|
Conference
Conference | 27th Annual Americas Conference on Information Systems, AMCIS 2021 |
---|---|
City | Virtual, Online |
Period | 9/08/21 → 13/08/21 |
Keywords
- Deep learning
- Emotional distress
- Machine learning
- Natural language processing
ASJC Scopus subject areas
- Information Systems