Abstract
Proper disposal of industrial brine has been a critical environmental challenge. Zero liquid discharge (ZLD) brine treatment holds great promise to the brine disposal, but its application is limited by the intensive energy consumption of its crystallization process. Here we propose a new strategy that employs an advanced solar crystallizer coupled with a salt crystallization inhibitor to eliminate highly concentrated waste brine. The rationally designed solar crystallizer exhibited a high water evaporation rate of 2.42 kg m−2 h−1 under one sun illumination when treating real concentrated seawater reverse osmosis (SWRO) brine (21.6 wt%). The solar crystallizer array showed an even higher water evaporation rate of 48.0 kg m−2 per day in the outdoor field test, suggesting a great potential for practical application. The solar crystallizer design and the salt crystallization inhibition strategy proposed and confirmed in this work provide a low-cost and sustainable solution for industrial brine disposal with ZLD.
Original language | English |
---|---|
Article number | 998 |
Journal | Nature Communications |
Volume | 12 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 2021 |
ASJC Scopus subject areas
- General Chemistry
- General Biochemistry,Genetics and Molecular Biology
- General Physics and Astronomy