Design of superresolved phase plates

Youhua Tan, Rui Guo, Shizhou Xiao, Guanghua Cheng, Wenhao Huang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

5 Citations (Scopus)

Abstract

Diffraction limit is always a key point to almost all optical systems, and diffraction effect is mostly dependent on the numerical aperture of objective and wavelength of light. However, it will be ultimately limited to improve the resolution continuously by increasing the numerical aperture or reducing the wavelength. Here, it is introduced that when these two parameters are fixed, focal spot smaller than Airy pattern could be obtained by means of superresolution techniques. Theoretical analysis for superresolution is presented. Binary phase plates corresponding to transverse or axial superresolution are designed, especially three-dimensional superresolution is proposed employing some optimization algorithms. The simulation results show that for light source with single wavelength or narrow spectral width, superresolution effects are fine, and when the superresolved phase plates are applied to femtosecond laser microfabrication system, the superresolution performances are even better when two-photon absorption is considered. Finally, the influences of spectrum of light sources are discussed. It has been demonstrated that when the spectral width is narrow, the performance of superresolved phase plates is approximately the same as that of a single wavelength. In conclusion, the superresoloved phase plates can be successfully applied to femtosecond laser systems for microfabrication, data memory and et al.

Original languageEnglish
Pages (from-to)281-287
Number of pages7
JournalJournal of Laser Micro Nanoengineering
Volume1
Issue number3
DOIs
Publication statusPublished - 1 Dec 2006
Externally publishedYes

Keywords

  • Compression ratio
  • Laser microfabrication
  • Optimization algorithm
  • Superresolution
  • Superresolved phase plate

ASJC Scopus subject areas

  • Instrumentation
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Design of superresolved phase plates'. Together they form a unique fingerprint.

Cite this