Abstract
The main objective of this paper is to study the behaviour and design of high strength steel columns at elevated temperatures using finite element analysis. In this study, equations predicting the yield strength and elastic modulus of high strength steel and mild steel at elevated temperatures are proposed. In addition, stress-strain curve model for high strength steel and mild steel materials at elevated temperatures is also proposed. The numerical analysis was performed on high strength steel columns over a range of column lengths for various temperatures. The nonlinear finite element model was verified against experimental results of columns at normal room and elevated temperatures. The effects of initial local and overall geometrical imperfections have been taken into consideration in the analysis. The material properties and stress-strain curves at elevated temperatures used in the finite element model were obtained from the proposed equations based on the material tests. Two series of box and I-section columns were studied using the finite element analysis to investigate the strength and behaviour of high strength steel columns at elevated temperatures. Both fixed-ended stub columns and pin-ended slender columns were considered. The column strengths predicted from the finite element analysis were compared with the design strengths predicted using the American, European and Australian specifications for hot-rolled steel columns at elevated temperatures by substituting the reduced material properties. In addition, the direct strength method, which was developed for the design of cold-formed steel columns at normal room temperature, was also used in this study to predict the high strength steel column strengths at elevated temperatures. The suitability of these design rules for high strength steel columns at elevated temperatures is assessed. Generally, it is shown that the American and European specifications as well as the direct strength method conservatively predicted the column strengths of high strength steel at elevated temperatures. The European Code predictions are slightly more conservative than the American Specification and the direct strength method predictions. © 2007 Elsevier Ltd. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 689-703 |
Number of pages | 15 |
Journal | Journal of Constructional Steel Research |
Volume | 64 |
Issue number | 6 |
DOIs | |
Publication status | Published - 1 Jun 2008 |
Externally published | Yes |
Keywords
- Columns
- Elevated temperatures
- Finite element method
- Fire resistant design
- High strength steel
ASJC Scopus subject areas
- Civil and Structural Engineering
- Building and Construction
- Mechanics of Materials
- Metals and Alloys