Design of cold-formed channels subjected to web crippling

Ben Young, G.J. Hancock

Research output: Journal article publicationJournal articleAcademic researchpeer-review

141 Citations (Scopus)

Abstract

A series of tests on cold-formed unlipped channels with comparatively stocky webs and subjected to web crippling is presented in this paper. The web slenderness values of the channels ranged from 15.3 to 45. The tests were conducted under the four loading conditions (End-One-Flange, Interior-One-Flange, End-Two-Flange, and Interior-Two-Flange) specified in the Australian/New Zealand and American specifications for cold-formed steel structures. The test strengths are compared with the design strengths obtained using the specifications. It is demonstrated that the design strengths predicted by the specifications are generally unconservative for unlipped channels. Test strengths as low as 43% of the design strengths were obtained. Hence, new web crippling design equations for unlipped channels are proposed in this paper. The proposed design equations are derived based on a simple plastic mechanism model, and the web crippling strength is obtained by dispersing the bearing load through the web. It is shown that the web crippling strengths predicted by the proposed design equations are generally conservative for unlipped channels with web slenderness values of less than or equal to 45. It is concluded that the proposed design equations for unlipped channels having stocky webs are reliable.
Original languageEnglish
Pages (from-to)1137-1144
Number of pages8
JournalJournal of Structural Engineering
Volume127
Issue number10
DOIs
Publication statusPublished - 1 Oct 2001
Externally publishedYes

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Building and Construction
  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Design of cold-formed channels subjected to web crippling'. Together they form a unique fingerprint.

Cite this