DenseLight: Efficient Control for Large-scale Traffic Signals with Dense Feedback

Junfan Lin, Yuying Zhu, Lingbo Liu, Yang Liu, Guanbin Li, Liang Lin

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

2 Citations (Scopus)

Abstract

Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network, which in turn enhances fuel utilization efficiency, air quality, and road safety, benefiting society as a whole. Due to the complexity of long-horizon control and coordination, most prior TSC methods leverage deep reinforcement learning (RL) to search for a control policy and have witnessed great success. However, TSC still faces two significant challenges. 1) The travel time of a vehicle is delayed feedback on the effectiveness of TSC policy at each traffic intersection since it is obtained after the vehicle has left the road network. Although several heuristic reward functions have been proposed as substitutes for travel time, they are usually biased and not leading the policy to improve in the correct direction. 2) The traffic condition of each intersection is influenced by the non-local intersections since vehicles traverse multiple intersections over time. Therefore, the TSC agent is required to leverage both the local observation and the non-local traffic conditions to predict the long-horizontal traffic conditions of each intersection comprehensively. To address these challenges, we propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness and a non-local enhanced TSC agent to better predict future traffic conditions for more precise traffic control. Extensive experiments and ablation studies demonstrate that DenseLight can consistently outperform advanced baselines on various road networks with diverse traffic flows. The code is available at https://github.com/junfanlin/DenseLight.

Original languageEnglish
Title of host publicationProceedings of the 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
EditorsEdith Elkind
PublisherInternational Joint Conferences on Artificial Intelligence
Pages6058-6066
Number of pages9
ISBN (Electronic)9781956792034
Publication statusPublished - 2023
Event32nd International Joint Conference on Artificial Intelligence, IJCAI 2023 - Macao, China
Duration: 19 Aug 202325 Aug 2023

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2023-August
ISSN (Print)1045-0823

Conference

Conference32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
Country/TerritoryChina
CityMacao
Period19/08/2325/08/23

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'DenseLight: Efficient Control for Large-scale Traffic Signals with Dense Feedback'. Together they form a unique fingerprint.

Cite this