Degradation of methotrexate by UV/peroxymonosulfate: Kinetics, effect of operational parameters and mechanism

Muhammad Imran Kanjal, Majid Muneer, Amal Abdelhaleem, Wei Chu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

30 Citations (Scopus)


Methotrexate (MTX) is one of the most consumed anti-cancer drugs in the pharmaceutical market around the world. The widespread occurrence of MTX in aquatic environment through hospital effluent has attracted increasing concern due to its potential to induce water pollution. In the present study, the degradation of MTX in aqueous medium was investigated by UV-activated peroxymonosulfate (PMS). A significant improvement in degradation rate by increasing UV intensity and PMS concentration while the decrease in degradation efficiency with the increase of solution pH and initial concentration of MTX was observed. The proposed UV/PMS process could achieve more than 90% MTX degradation in 30 min with a good mineralization degree (65%). A pseudo-first order kinetic model was employed and successfully predicted the degradation of MTX. The effect of other operational parameters such as the initial concentration of the targeted compound, dosage of oxidant (PMS), solution pH and UV intensity on the degradation rate were investigated. At the last, the main transform intermediates were identified using LC–MS and possible degradation pathways were proposed. The results show that UV/PMS can be used as an efficient technology to treat pharmaceuticals such as methotrexate containing water and wastewater.

Original languageEnglish
Pages (from-to)2658-2667
Number of pages10
JournalChinese Journal of Chemical Engineering
Issue number10
Publication statusPublished - Oct 2020


  • Advanced oxidation process
  • Methotrexate
  • Peroxymonosulfate
  • UV radiation

ASJC Scopus subject areas

  • Environmental Engineering
  • Biochemistry
  • General Chemistry
  • General Chemical Engineering


Dive into the research topics of 'Degradation of methotrexate by UV/peroxymonosulfate: Kinetics, effect of operational parameters and mechanism'. Together they form a unique fingerprint.

Cite this