Deformation and reperfusion damages and their accumulation in subcutaneous tissues during loading and unloading: A theoretical modeling of deep tissue injuries

Arthur F.T. Mak, Yanyan Yu, Linda P.C. Kwan, Lei Sun, Wing Cheung Eric Tam

Research output: Journal article publicationJournal articleAcademic researchpeer-review

15 Citations (Scopus)


Deep tissue injuries (DTI) involve damages in the subcutaneous tissues under intact skin incurred by prolonged excessive epidermal loadings. This paper presents a new theoretical model for the development of DTI, broadly based on the experimental evidence in the literatures. The model covers the loading damages implicitly inclusive of both the direct mechanical and ischemic injuries, and the additional reperfusion damages and the competing healing processes during the unloading phase. Given the damage accumulated at the end of the loading period, the relative strength of the reperfusion and the healing capacity of the involved tissues system, the model provides a description of the subsequent damage evolution during unloading. The model is used to study parametrically the scenario when reperfusion damage dominates over healing upon unloading and the opposite scenario when the loading and subsequent reperfusion damages remain small relative to the healing capacity of the tissues system. The theoretical model provides an integrated understanding of how tissue damage may further build-up paradoxically even with unloading, how long it would take for the loading and reperfusion damages in the tissues to become fully recovered, and how such loading and reperfusion damages, if not given sufficient time for recovery, may accumulate over multiple loading and unloading cycles, leading to clinical deep tissues ulceration.
Original languageEnglish
Pages (from-to)65-73
Number of pages9
JournalJournal of Theoretical Biology
Issue number1
Publication statusPublished - 21 Nov 2011


  • Biomechanics
  • Damage accumulation
  • Ischemia
  • Pressure ulcer
  • Reperfusion

ASJC Scopus subject areas

  • Statistics and Probability
  • Medicine(all)
  • Modelling and Simulation
  • Immunology and Microbiology(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Applied Mathematics

Cite this