Deep skip connection and multi-deconvolution network for single image super-resolution

Shiyu Hu, Muwei Jian, Guodong Wang, Yanjie Wang, Zhenkuan Pan, Kin Man Lam

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

Abstract

In this paper, we propose an efficient single image super-resolution (SR) method for multi-scale image texture recovery, based on Deep Skip Connection and Multi-Deconvolution Network. Our proposed method focuses on enhancing the expression capability of the convolutional neural network, so as to significantly improve the accuracy of the reconstructed higher-resolution texture details in images. The use of deep skip connection (DSC) can make full use of low-level information with the rich deep features. The multi-deconvolution layers (MDL) introduced can decrease the feature dimension, so this can reduce the computation required, caused by deepening the number of layers. All these features can reconstruct high-quality SR images. Experiment results show that our proposed method achieves state-of-the-art performance.

Original languageEnglish
Title of host publicationInternational Workshop on Advanced Imaging Technology, IWAIT 2020
EditorsPhooi Yee Lau, Mohammad Shobri
PublisherSPIE
ISBN (Electronic)9781510638358
DOIs
Publication statusPublished - Jan 2020
EventInternational Workshop on Advanced Imaging Technology, IWAIT 2020 - Yogyakarta, Indonesia
Duration: 5 Jan 20207 Jan 2020

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume11515
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceInternational Workshop on Advanced Imaging Technology, IWAIT 2020
CountryIndonesia
CityYogyakarta
Period5/01/207/01/20

Keywords

  • Convolutional neural network
  • Deep skip connection
  • Multi-deconvolution layers
  • Peak signal-to-noise ratio
  • Super-resolution

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Cite this