TY - JOUR
T1 - Deep learning for the automatic detection and segmentation of parotid gland tumors on MRI
AU - Zhang, Rongli
AU - Wong, Lun M.
AU - So, Tiffany Y.
AU - Cai, Zongyou
AU - Deng, Qiao
AU - Tsang, Yip Man
AU - Ai, Qi Yong H.
AU - King, Ann D.
N1 - Publisher Copyright:
© 2024
PY - 2024/5
Y1 - 2024/5
N2 - Objectives: Parotid gland tumors (PGTs) often occur as incidental findings on magnetic resonance images (MRI) that may be overlooked. This study aimed to construct and validate a deep learning model to automatically identify parotid glands (PGs) with a PGT from normal PGs, and in those with a PGT to segment the tumor. Materials and methods: The nnUNet combined with a PG-specific post-processing procedure was used to develop the deep learning model trained on T1-weighed images (T1WI) in 311 patients (180 PGs with tumors and 442 normal PGs) and fat-suppressed (FS)-T2WI in 257 patients (125 PGs with tumors and 389 normal PGs), for detecting and segmenting PGTs with five-fold cross-validation. Additional validation set separated by time, comprising T1WI in 34 and FS-T2WI in 41 patients, was used to validate the model performance. Results and conclusion: To identify PGs with tumors from normal PGs, using combined T1WI and FS-T2WI, the deep learning model achieved an accuracy, sensitivity and specificity of 98.2% (497/506), 100% (119/119) and 97.7% (378/387), respectively, in the cross-validation set and 98.5% (67/68), 100% (20/20) and 97.9% (47/48), respectively, in the validation set. For patients with PGTs, automatic segmentation of PGTs on T1WI and FS-T2WI achieved mean dice coefficients of 86.1% and 84.2%, respectively, in the cross-validation set, and of 85.9% and 81.0%, respectively, in the validation set. The proposed deep learning model may assist the detection and segmentation of PGTs and, by acting as a second pair of eyes, ensure that incidentally detected PGTs on MRI are not missed.
AB - Objectives: Parotid gland tumors (PGTs) often occur as incidental findings on magnetic resonance images (MRI) that may be overlooked. This study aimed to construct and validate a deep learning model to automatically identify parotid glands (PGs) with a PGT from normal PGs, and in those with a PGT to segment the tumor. Materials and methods: The nnUNet combined with a PG-specific post-processing procedure was used to develop the deep learning model trained on T1-weighed images (T1WI) in 311 patients (180 PGs with tumors and 442 normal PGs) and fat-suppressed (FS)-T2WI in 257 patients (125 PGs with tumors and 389 normal PGs), for detecting and segmenting PGTs with five-fold cross-validation. Additional validation set separated by time, comprising T1WI in 34 and FS-T2WI in 41 patients, was used to validate the model performance. Results and conclusion: To identify PGs with tumors from normal PGs, using combined T1WI and FS-T2WI, the deep learning model achieved an accuracy, sensitivity and specificity of 98.2% (497/506), 100% (119/119) and 97.7% (378/387), respectively, in the cross-validation set and 98.5% (67/68), 100% (20/20) and 97.9% (47/48), respectively, in the validation set. For patients with PGTs, automatic segmentation of PGTs on T1WI and FS-T2WI achieved mean dice coefficients of 86.1% and 84.2%, respectively, in the cross-validation set, and of 85.9% and 81.0%, respectively, in the validation set. The proposed deep learning model may assist the detection and segmentation of PGTs and, by acting as a second pair of eyes, ensure that incidentally detected PGTs on MRI are not missed.
KW - Automatic tumor detection and segmentation
KW - Deep learning
KW - Non-contrast-enhanced MRI
KW - Parotid gland tumors
UR - http://www.scopus.com/inward/record.url?scp=85190239821&partnerID=8YFLogxK
U2 - 10.1016/j.oraloncology.2024.106796
DO - 10.1016/j.oraloncology.2024.106796
M3 - Journal article
C2 - 38615586
AN - SCOPUS:85190239821
SN - 1368-8375
VL - 152
JO - Oral Oncology
JF - Oral Oncology
M1 - 106796
ER -