Decompose-and-Integrate Learning for Multi-class Segmentation in Medical Images

Yizhe Zhang, Michael T.C. Ying, Danny Z. Chen

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

1 Citation (Scopus)

Abstract

Segmentation maps of medical images annotated by medical experts contain rich spatial information. In this paper, we propose to decompose annotation maps to learn disentangled and richer feature transforms for segmentation problems in medical images. Our new scheme consists of two main stages: decompose and integrate. Decompose: by annotation map decomposition, the original segmentation problem is decomposed into multiple segmentation sub-problems; these new segmentation sub-problems are modeled by training multiple deep learning modules, each with its own set of feature transforms. Integrate: a procedure summarizes the solutions of the modules in the previous stage; a final solution is then formed for the original segmentation problem. Multiple ways of annotation map decomposition are presented and a new end-to-end trainable K-to-1 deep network framework is developed for implementing our proposed “decompose-and-integrate” learning scheme. In experiments, we demonstrate that our decompose-and-integrate segmentation scheme, utilizing state-of-the-art fully convolutional networks (e.g., DenseVoxNet in 3D and CUMedNet in 2D), improves segmentation performance on multiple 3D and 2D datasets. Ablation study confirms the effectiveness of our proposed learning scheme for medical images.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditorsDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
PublisherSpringer
Pages641-650
Number of pages10
ISBN (Print)9783030322441
DOIs
Publication statusPublished - 1 Jan 2019
Event22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: 13 Oct 201917 Oct 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11765 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
CountryChina
CityShenzhen
Period13/10/1917/10/19

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Cite this