TY - JOUR
T1 - Daylighting and overall energy performance of a novel semi-transparent photovoltaic vacuum glazing in different climate zones
AU - Qiu, Changyu
AU - Yang, Hongxing
N1 - Funding Information:
The work described in this paper was supported by the Research Institute for Sustainable Urban Development (RISUD) of The Hong Kong Polytechnic University (A/C: 1-ZVED ).
Publisher Copyright:
© 2020 Elsevier Ltd
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/10/15
Y1 - 2020/10/15
N2 - Amorphous silicon-based semi-transparent photovoltaic windows can produce renewable electricity and offer a certain amount of natural daylight for occupants. However, it has a deficiency as the absorbed solar energy would be partially transferred into additional cooling demand in summer. In this respect, a novel semi-transparent photovoltaic vacuum glazing is proposed to improve energy performance. The selection of appropriate glazing of an energy-efficient building should take into consideration the specific climate conditions. The daylighting behaviour of the glazing will also affect the daylighting performance as well as the lighting consumption. In this paper, the thermal performance, daylighting performance and overall energy performance of the proposed vacuum PV glazing in different climate regions have been investigated. A daylighting model was conducted by DAYSIM to evaluate the annual daylighting performance. It was found that the vacuum PV glazing can balance daylighting availability and visual comfort by providing sufficient daylight in the anterior half of the room and reducing daylight glare to the minimum level. The energy simulation by EnergyPlus demonstrated that the vacuum PV glazing has the energy-saving potential up to 43.4%, 66.0%, 48.8%, and 35.0% in Harbin, Beijing, Wuhan and Hong Kong, respectively. However, the applications of the vacuum glazing lead to additional cooling consumption in the moderate climate zone, such as Kunming. The results advanced the understanding on the applicability and limitation of the vacuum PV glazing in different climate backgrounds. Furthermore, the reversed and the reversible vacuum PV glazing were proposed to enhance the adaptability. The results suggest that the reversible vacuum PV glazing can act energy response in a more efficient way and fully utilize the energy-saving potential of the integration of the PV glazing and the vacuum glazing.
AB - Amorphous silicon-based semi-transparent photovoltaic windows can produce renewable electricity and offer a certain amount of natural daylight for occupants. However, it has a deficiency as the absorbed solar energy would be partially transferred into additional cooling demand in summer. In this respect, a novel semi-transparent photovoltaic vacuum glazing is proposed to improve energy performance. The selection of appropriate glazing of an energy-efficient building should take into consideration the specific climate conditions. The daylighting behaviour of the glazing will also affect the daylighting performance as well as the lighting consumption. In this paper, the thermal performance, daylighting performance and overall energy performance of the proposed vacuum PV glazing in different climate regions have been investigated. A daylighting model was conducted by DAYSIM to evaluate the annual daylighting performance. It was found that the vacuum PV glazing can balance daylighting availability and visual comfort by providing sufficient daylight in the anterior half of the room and reducing daylight glare to the minimum level. The energy simulation by EnergyPlus demonstrated that the vacuum PV glazing has the energy-saving potential up to 43.4%, 66.0%, 48.8%, and 35.0% in Harbin, Beijing, Wuhan and Hong Kong, respectively. However, the applications of the vacuum glazing lead to additional cooling consumption in the moderate climate zone, such as Kunming. The results advanced the understanding on the applicability and limitation of the vacuum PV glazing in different climate backgrounds. Furthermore, the reversed and the reversible vacuum PV glazing were proposed to enhance the adaptability. The results suggest that the reversible vacuum PV glazing can act energy response in a more efficient way and fully utilize the energy-saving potential of the integration of the PV glazing and the vacuum glazing.
KW - Building integrated photovoltaic (BIPV)
KW - Daylighting performance
KW - Overall energy performance
KW - Semi-transparent photovoltaic
KW - Vacuum glazing
UR - http://www.scopus.com/inward/record.url?scp=85087895401&partnerID=8YFLogxK
U2 - 10.1016/j.apenergy.2020.115414
DO - 10.1016/j.apenergy.2020.115414
M3 - Journal article
AN - SCOPUS:85087895401
SN - 0306-2619
VL - 276
JO - Applied Energy
JF - Applied Energy
M1 - 115414
ER -