Data Selection Curriculum for Abstractive Text Summarization

Shichao Sun, Ruifeng Yuan, Jianfei He, Ziqiang Cao, Wenjie Li, Xiaohua Jia

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

Abstract

Abstractive Text Summarization (ATS) models are commonly trained using large-scale data that is randomly shuffled. However, the impact of data selection and data ordering on ATS models remains a relatively unexplored research area, where a significant challenge lies in accurately assessing the learning difficulty of each training instance. This study introduces a Data Selection Curriculum (DSC) scoring system that incorporates both the difficulty of improving ATS model via an instance and the expected performance on this instance. By selectively excluding excessively simple and overly complex instances, the training efficiency can be optimized. Furthermore, curriculum learning is integrated to accelerate convergence and improve performance by gradually increasing the learning difficulty, inspired by human learners. Experimental results on the CNN/DailyMail dataset demonstrate that our approach surpasses potent baselines, utilizing a mere 20% of the available instances.

Original languageEnglish
Title of host publicationFindings of the Association for Computational Linguistics
Subtitle of host publicationEMNLP 2023
PublisherAssociation for Computational Linguistics (ACL)
Pages7990-7995
Number of pages6
ISBN (Electronic)9798891760615
Publication statusPublished - Dec 2023
Event2023 Findings of the Association for Computational Linguistics: EMNLP 2023 - Singapore, Singapore
Duration: 6 Dec 202310 Dec 2023

Publication series

NameFindings of the Association for Computational Linguistics: EMNLP 2023

Conference

Conference2023 Findings of the Association for Computational Linguistics: EMNLP 2023
Country/TerritorySingapore
CitySingapore
Period6/12/2310/12/23

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems
  • Language and Linguistics
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Data Selection Curriculum for Abstractive Text Summarization'. Together they form a unique fingerprint.

Cite this