Crumpled, high-power, and safe wearable Lithium-Ion Battery enabled by nanostructured metallic textiles

Dongrui Wang, Jian Chang, Qiyao Huang, Dongdong Chen, Peng Li, Yau Wai Denis Yu, Zijian Zheng

Research output: Journal article publicationJournal articleAcademic researchpeer-review

19 Citations (Scopus)

Abstract

Textile-based flexible Lithium-Ion Batteries (LIBs) show promising mechanical flexibility that is appealing for a wide variety of wearable and flexible electronic applications. The flexibility of flexible LIBs nowadays is still limited. In addition, their power performance is too low to enable high-speed charging, due to the low conductivity of the textiles. Here, we develop highly electrically conductive metallic fabrics, which are fabricated by coating nanostructured Ni or Cu (nano-reliefs) on woven cotton fabrics, as current collectors to enable crumpled, high-power, and safe wearable LIBs. The nanostructured metal coating not only effectively increases the contact area between current collectors and active materials, but also shortens the charge carrier transport paths, so that LIBs constructed on these nanostructured metallic cotton fabrics exhibit a high power density of 439 W/L and superior electrochemical stability under various mechanical deformations including folding, twisting, squeezing, and impacting. This type of nanostructured metallic textile is highly desirable for portable and wearable electronic applications.

Original languageEnglish
Pages (from-to)399-407
Number of pages9
JournalFundamental Research
Volume1
Issue number4
DOIs
Publication statusPublished - Jul 2021

Keywords

  • Energy storage
  • Flexible battery
  • Metallic textile
  • Nanostructure
  • Wearable electronics

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Crumpled, high-power, and safe wearable Lithium-Ion Battery enabled by nanostructured metallic textiles'. Together they form a unique fingerprint.

Cite this