TY - JOUR
T1 - Criteria-based critical review of artificial intelligence applications in water-leak management
AU - Abdelmageed, Sherif
AU - Tariq, Salman
AU - Boadu, Vincent
AU - Zayed, Tarek
N1 - Publisher Copyright:
© Canadian Science Publishing. All rights reserved.
PY - 2022/3
Y1 - 2022/3
N2 - Leakages in water distribution networks (WDNs) cause economic losses and environmental hazards. It is, therefore, unsurprising that water-leak management has been a focus of research over the last couple of decades, but leaks in WDNs still occur frequently. Thus, this domain is experiencing a transformation from traditional signal processing and statistical-based models to artificial intelligence (AI) based models for recognizing complex leak patterns, handling large datasets, and establishing accurate leak-management models, especially in leak detection and localization. However, a comprehensive review of the application of AI in water-leak management is largely missing from the literature. To bridge this gap, this review presents a criteria-based critical review to systematically investigate the existing literature on the application of AI in four sub-domains of leak management including leak detection, localization, prediction, and sizing. The first criterion (research attributes) established the (1) research trends, (2) links between influential countries and sources, and (3) popular keywords using scientometric analysis. The systematic analysis of the second criterion (research technicality) and the third criterion (research focus) revealed the (1) AI-techniques adopted, (2) equipment used for collecting data, (3) data features used in the models, (4) objectives of different models adopted, (5) type of experiments conducted to collect the data, and (6) types of pipes for which models were developed. The study highlighted research gaps, future research directions, and proposed a leak management framework for upcoming AI studies in this domain. This review is intended to serve early researchers by enhancing their understanding of existing research in AI-based leak management as well as seasoned researchers by providing a platform for future research.
AB - Leakages in water distribution networks (WDNs) cause economic losses and environmental hazards. It is, therefore, unsurprising that water-leak management has been a focus of research over the last couple of decades, but leaks in WDNs still occur frequently. Thus, this domain is experiencing a transformation from traditional signal processing and statistical-based models to artificial intelligence (AI) based models for recognizing complex leak patterns, handling large datasets, and establishing accurate leak-management models, especially in leak detection and localization. However, a comprehensive review of the application of AI in water-leak management is largely missing from the literature. To bridge this gap, this review presents a criteria-based critical review to systematically investigate the existing literature on the application of AI in four sub-domains of leak management including leak detection, localization, prediction, and sizing. The first criterion (research attributes) established the (1) research trends, (2) links between influential countries and sources, and (3) popular keywords using scientometric analysis. The systematic analysis of the second criterion (research technicality) and the third criterion (research focus) revealed the (1) AI-techniques adopted, (2) equipment used for collecting data, (3) data features used in the models, (4) objectives of different models adopted, (5) type of experiments conducted to collect the data, and (6) types of pipes for which models were developed. The study highlighted research gaps, future research directions, and proposed a leak management framework for upcoming AI studies in this domain. This review is intended to serve early researchers by enhancing their understanding of existing research in AI-based leak management as well as seasoned researchers by providing a platform for future research.
KW - artificial intelligence
KW - criteria-based review
KW - water-leak management
UR - http://www.scopus.com/inward/record.url?scp=85130471498&partnerID=8YFLogxK
U2 - 10.1139/er-2021-0046
DO - 10.1139/er-2021-0046
M3 - Review article
AN - SCOPUS:85130471498
SN - 1181-8700
VL - 30
SP - 280
EP - 297
JO - Environmental Reviews
JF - Environmental Reviews
IS - 2
ER -