CO2-tolerant perovskite cathodes for enhanced solid oxide fuel cells: advancements, challenges, and strategic perspectives

Zilin Ma, Qirui Ye, Huaqing Ye, Feifei Dong, Meng Ni, Zhan Lin

Research output: Journal article publicationReview articleAcademic researchpeer-review

1 Citation (Scopus)

Abstract

The key to realizing efficient and durable operation of solid oxide fuel cells (SOFCs) lies in the development of CO2-tolerant cathodes, a major determinant of the overall power output in the presence of contaminants. Significant strides have been made in recent years toward developing highly CO2-tolerant perovskite cathodes, forecasting a bright future for SOFCs. This review presents an integrated and comprehensive discussion on this topic, encompassing the latest progress, underlying reaction mechanisms, various evaluation methods, and feasible coping strategies. Particular attention is devoted to cutting-edge characterization technologies, with an emphasis on in situ/operando characterization tools, together with density functional theory calculations. They are employed to provide an in-depth insight into the complex interactions between electrodes and contaminants, enabling the tailored design of cathode surfaces and interfaces to enhance performance. On this basis, by combining experimental insights with theoretical analysis, this review articulates a comprehensive roadmap for the rational design of state-of-the-art perovskite cathode materials. Ultimately, this advancement is expected to usher in a new generation of fully CO2-tolerant cathode materials, thereby further bolstering the capability of SOFCs.

Original languageEnglish
JournalJournal of Materials Chemistry A
DOIs
Publication statusAccepted/In press - Jun 2024

ASJC Scopus subject areas

  • General Chemistry
  • Renewable Energy, Sustainability and the Environment
  • General Materials Science

Fingerprint

Dive into the research topics of 'CO2-tolerant perovskite cathodes for enhanced solid oxide fuel cells: advancements, challenges, and strategic perspectives'. Together they form a unique fingerprint.

Cite this