Controlling nanoparticle formation via sizable cages of supramolecular soft materials

Jing Liang Li, Xiang Yang Liu, Xungai Wang, Rong Yao Wang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

19 Citations (Scopus)

Abstract

We present a new generic strategy to fabricate nanoparticles in the "cages" within the fibrous networks of supramolecular soft materials. As the cages can be acquired by a design-and-production manner, the size of nanoparticles synthesized within the cages can be tuned accordingly. To implement this idea, both selenium and silver were chosen for the detailed investigation. It follows that the sizes of selenium and silver nanoparticles can be controlled by tuning the pore size of the fiber networks in the material. When the concentration of the gelator is high enough, monodisperse nanoparticles can be prepared. More interestingly, the morphology of the nanoparticles can be altered: silver disks can be formed when the concentrations of both the gelator and silver nitrate are sufficiently low. As the fiber network serves as a physical barrier and semisolid support for the nanoparticles, the stability in the aqueous media and the ease of application of these nanoparticles can be substantially enhanced. This robust surfactant-free approach will not only allow the controlled fabrication of nanoparticles, but also can be applied to the fabrication of composite materials for robust applications.

Original languageEnglish
Pages (from-to)7820-7827
Number of pages8
JournalLangmuir
Volume27
Issue number12
DOIs
Publication statusPublished - 21 Jun 2011
Externally publishedYes

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Controlling nanoparticle formation via sizable cages of supramolecular soft materials'. Together they form a unique fingerprint.

Cite this