@inproceedings{dddeaa9c3dc64ee2939f45544b908696,
title = "Controllable particle hopping in optofluidic lattice for antibody screening and binding efficiency measurement",
abstract = "Particle patterning and hopping has attracted much attention owing to their extensive involvement in many physical and biological studies. Here, by configuring an intriguing Optofluidic, we are able to pattern 500 nm particles into a 2D array in the flow stream. We also achieve a 2D patterning of cryptosporidium in the microchannel. By investing particle-particle interactions, we studies the long ignored new particle hopping mechanisms, and used them to screen antibodies. Our observed particle hopping in the flow stream completes the family of particle kinetics in optofluidic potential wells and inspires new minds in the develop new light fields in the microchannel. The 2D patterning of particles facilites the parallel culture and study of multiple biological samples in the flow stream.",
keywords = "Antibody screening, Optical manipulation, Optofluidics, Particle hopping",
author = "Shi, {Y. Z.} and S. Xiong and Y. Zhang and Chin, {L. K.} and Wu, {J. H.} and Chen, {T. N.} and Liu, {A. Q.}",
note = "Publisher Copyright: {\textcopyright} 2018 SPIE.; Optical Trapping and Optical Micromanipulation XV 2018 ; Conference date: 19-08-2018 Through 23-08-2018",
year = "2018",
month = aug,
doi = "10.1117/12.2319693",
language = "English",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
publisher = "SPIE",
editor = "Spalding, {Gabriel C.} and Kishan Dholakia",
booktitle = "Optical Trapping and Optical Micromanipulation XV",
address = "United States",
}