Contrastive Knowledge Graph Error Detection

Qinggang Zhang, Junnan Dong, Keyu Duan, Xiao Huang, Yezi Liu, Linchuan Xu

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

38 Citations (Scopus)

Abstract

Knowledge Graph (KG) errors introduce non-negligible noise, severely affecting KG-related downstream tasks. Detecting errors in KGs is challenging since the patterns of errors are unknown and diverse, while ground-truth labels are rare or even unavailable. A traditional solution is to construct logical rules to verify triples, but it is not generalizable since different KGs have distinct rules with domain knowledge involved. Recent studies focus on designing tailored detectors or ranking triples based on KG embedding loss. However, they all rely on negative samples for training, which are generated by randomly replacing the head or tail entity of existing triples. Such a negative sampling strategy is not enough for prototyping practical KG errors, e.g., (Bruce_Lee, place_of_birth, China), in which the three elements are often relevant, although mismatched. We desire a more effective unsupervised learning mechanism tailored for KG error detection. To this end, we propose a novel framework - ContrAstive knowledge Graph Error Detection (CAGED). It introduces contrastive learning into KG learning and provides a novel way of modeling KG. Instead of following the traditional setting, i.e., considering entities as nodes and relations as semantic edges, CAGED augments a KG into different hyper-views, by regarding each relational triple as a node. After joint training with KG embedding and contrastive learning loss, CAGED assesses the trustworthiness of each triple based on two learning signals, i.e., the consistency of triple representations across multi-views and the self-consistency within the triple. Extensive experiments on three real-world KGs show that CAGED outperforms state-of-the-art methods in KG error detection. Our codes and datasets are available at https://github.com/Qing145/CAGED.git.

Original languageEnglish
Title of host publicationCIKM 2022 - Proceedings of the 31st ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages2590-2599
Number of pages10
ISBN (Electronic)9781450392365
DOIs
Publication statusPublished - 17 Oct 2022
Event31st ACM International Conference on Information and Knowledge Management, CIKM 2022 - Atlanta, United States
Duration: 17 Oct 202221 Oct 2022

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Conference

Conference31st ACM International Conference on Information and Knowledge Management, CIKM 2022
Country/TerritoryUnited States
CityAtlanta
Period17/10/2221/10/22

Keywords

  • anomaly detection
  • contrastive learning
  • knowledge graph

ASJC Scopus subject areas

  • General Business,Management and Accounting
  • General Decision Sciences

Fingerprint

Dive into the research topics of 'Contrastive Knowledge Graph Error Detection'. Together they form a unique fingerprint.

Cite this