TY - JOUR
T1 - Constructal blade shape in nanofluids
AU - Bai, Chao
AU - Wang, Liqiu
N1 - Funding Information:
The financial support from the Research Grants Council of Hong Kong (GRF718009 and GRF717508) and the CRCG of the University of Hong Kong (Project 10400920) is gratefully acknowledged.
PY - 2011/1
Y1 - 2011/1
N2 - Blade configuration of nanofluids has been proven to perform much better than dispersed configuration for some heat conduction systems. The analytical analysis and numerical calculation are made for the cylinder-shaped and regular-rectangular-prism-shaped building blocks of the blade-configured heat conduction systems (using nanofluids as the heat conduction media) to find the optimal cross-sectional shape for the nanoparticle blade under the same composing materials, composition ratio, volumetric heat generation rate, and total building block volume. The regular-triangular-prism-shaped blade has been proven to perform better than all the other three kinds of blades, namely, the regular-rectangular-prism-shaped blade, the regular-hexagonal-prism-shaped blade, and the cylinder-shaped blade. Thus, the regular-triangular-prism-shaped blade is selected as the optimally shaped blade for the two kinds of building blocks that are considered in this study. It is also proven that the constructal cylinder-regular-triangular-prism building block performs better than the constructal regular-rectangular-prism-regular-triangular-prism building block.
AB - Blade configuration of nanofluids has been proven to perform much better than dispersed configuration for some heat conduction systems. The analytical analysis and numerical calculation are made for the cylinder-shaped and regular-rectangular-prism-shaped building blocks of the blade-configured heat conduction systems (using nanofluids as the heat conduction media) to find the optimal cross-sectional shape for the nanoparticle blade under the same composing materials, composition ratio, volumetric heat generation rate, and total building block volume. The regular-triangular-prism-shaped blade has been proven to perform better than all the other three kinds of blades, namely, the regular-rectangular-prism-shaped blade, the regular-hexagonal-prism-shaped blade, and the cylinder-shaped blade. Thus, the regular-triangular-prism-shaped blade is selected as the optimally shaped blade for the two kinds of building blocks that are considered in this study. It is also proven that the constructal cylinder-regular-triangular-prism building block performs better than the constructal regular-rectangular-prism-regular-triangular-prism building block.
UR - http://www.scopus.com/inward/record.url?scp=84255168672&partnerID=8YFLogxK
U2 - 10.1186/1556-276X-6-240
DO - 10.1186/1556-276X-6-240
M3 - Journal article
AN - SCOPUS:84255168672
SN - 1931-7573
VL - 6
JO - Nanoscale Research Letters
JF - Nanoscale Research Letters
IS - 1
M1 - 240
ER -