TY - JOUR
T1 - Confined Synthesis of 2D Nanostructured Materials toward Electrocatalysis
AU - Li, Zhenhua
AU - Zhang, Xiao
AU - Cheng, Hongfei
AU - Liu, Jiawei
AU - Shao, Mingfei
AU - Wei, Min
AU - Evans, David G.
AU - Zhang, Hua
AU - Duan, Xue
N1 - Funding Information:
This work was supported by the National Natural Science Foundation of China (21601011; 21871021; 21521005), the National Key Research and Development Programme (2017YFA0206804), the Fundamental Research Funds for the Central Universities (XK1802-6 and 12060093063) in china, and the MOE under AcRF Tier 2 (MOE2015-T2-2-057; MOE2016-T2-2-103; MOE2017-T2-1-162) and AcRF Tier 1 (2016-T1-002-051; 2017-T1-001-150; 2017-T1-002-119), and NTU under Start-Up Grant (M4081296.070.500000) in Singapore. The authors would like to acknowledge the Facility for Analysis, Characterization, Testing and Simulation, Nanyang Technological University, Singapore, for use of their electron microscopy (and/or X-ray) facilities. H.Z. thanks the support from ITC via Hong Kong Branch of National Precious Metals Material Engineering Research Center, and the Start-Up Grant from City University of Hong Kong.
Publisher Copyright:
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2020/3/1
Y1 - 2020/3/1
N2 - 2D nanostructured materials have shown great application prospects in energy conversion, owing to their unique structural features and fascinating physicochemical properties. Developing efficient approaches for the synthesis of well-defined 2D nanostructured materials with controllable composition and morphology is critical. The emerging concept, confined synthesis, has been regarded as a promising strategy to design and synthesize novel 2D nanostructured materials. This review mainly summarizes the recent advances in confined synthesis of 2D nanostructured materials by using layered materials as host matrices (also denoted as “nanoreactors”). By virtue of the space- and surface-confinement effects of these layered hosts, various well-organized 2D nanostructured materials, including 2D metals, 2D metal compounds, 2D carbon materials, 2D polymers, 2D metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs), as well as 2D carbon nitrides are successfully synthesized. The wide employment of these 2D materials in electrocatalytic applications (e.g., electrochemical oxygen/hydrogen evolution reactions, small molecule oxidation, and oxygen reduction reaction) is presented and discussed. In the final section, challenges and prospects in 2D confined synthesis from the viewpoint of designing new materials and exploring practical applications are commented, which would push this fast-evolving field a step further toward greater success in both fundamental studies and ultimate industrialization.
AB - 2D nanostructured materials have shown great application prospects in energy conversion, owing to their unique structural features and fascinating physicochemical properties. Developing efficient approaches for the synthesis of well-defined 2D nanostructured materials with controllable composition and morphology is critical. The emerging concept, confined synthesis, has been regarded as a promising strategy to design and synthesize novel 2D nanostructured materials. This review mainly summarizes the recent advances in confined synthesis of 2D nanostructured materials by using layered materials as host matrices (also denoted as “nanoreactors”). By virtue of the space- and surface-confinement effects of these layered hosts, various well-organized 2D nanostructured materials, including 2D metals, 2D metal compounds, 2D carbon materials, 2D polymers, 2D metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs), as well as 2D carbon nitrides are successfully synthesized. The wide employment of these 2D materials in electrocatalytic applications (e.g., electrochemical oxygen/hydrogen evolution reactions, small molecule oxidation, and oxygen reduction reaction) is presented and discussed. In the final section, challenges and prospects in 2D confined synthesis from the viewpoint of designing new materials and exploring practical applications are commented, which would push this fast-evolving field a step further toward greater success in both fundamental studies and ultimate industrialization.
KW - 2D nanomaterials
KW - confined synthesis
KW - electrocatalysis
KW - nanoreactors
UR - http://www.scopus.com/inward/record.url?scp=85064614602&partnerID=8YFLogxK
U2 - 10.1002/aenm.201900486
DO - 10.1002/aenm.201900486
M3 - Review article
AN - SCOPUS:85064614602
SN - 1614-6832
VL - 10
JO - Advanced Energy Materials
JF - Advanced Energy Materials
IS - 11
M1 - 1900486
ER -