Abstract
In this paper, poly(2-(N-carbazolyl)ethyl methacrylate) (PCEM) brushes have been prepared on the indium-tin oxide (ITO) surfaces via surface-initiated atom transfer radical polymerization (ATRP) using a silane coupling agent containing the initiator moiety. Films of PCEM brushes between bottom ITO electrode and Al top electrode are sandwiched to fabricate the ITO-g-PCEM/Al device. The device exhibits two conductivity states and can be switched from the initial low-conductivity (OFF) state to the high-conductivity (ON) state at the switching threshold voltages of -1.5 V with the ON/OFF current ratio up to 10 6. The ON state of the device is nonvolatile and can withstand 10 6 pulse read cycles at -0.8 V under ambient conditions. Upon reversing the bias, the ON state cannot be reset to the initial OFF states. The ITO-g-PCEM/Al device behaves as a write-once read-many-times (WORM) memory. Compared with that of the conventional ITO/PCEM/Al device fabricated by spin-coating, the switching voltage is lower in the ITO-g-PCEM/Al memory device.
Original language | English |
---|---|
Pages (from-to) | 1059-1064 |
Number of pages | 6 |
Journal | Synthetic Metals |
Volume | 162 |
Issue number | 13-14 |
DOIs | |
Publication status | Published - 1 Aug 2012 |
Keywords
- Atom transfer radical polymerization
- Carbazole
- Memory effect
- Polymer brushes
- Switching
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Metals and Alloys
- Materials Chemistry