TY - GEN
T1 - Conceptual design, performance evaluation and dimensional optimization of a compact acceleration sensor based on flexure parallel mechanisms
AU - Zhang, Dan
AU - Gao, Zhen
PY - 2011
Y1 - 2011
N2 - In this paper, a tridimensional acceleration sensor based on flexure parallel mechanism (FPM) is presented. Three perpendicular compliant legs with compact monolithic structure are served as the elastic body for sensing the inertial signals in each direction. With integrated flexure hinges, each chain containing multiple revolute joints and cantilever beams are designed to carry compressive and tensile loads. Firstly, the structure evolution and kinematics modeling are introduced, followed by the multi-spring modeling of the directional compliance for the flexure leg. Then, the comprehensive finite-element analysis (FEA) including the strain of the sensitive legs, modal analysis for total deformation under different frequency is conducted. The compliances calculated by FEA and multi-spring model are compared. Finally, the dimensional optimization is implemented based on multi-population genetic algorithm to obtain the optimal flexure parameters. The proposed methods and algorithms are also useful for the analysis and development of other flexure parallel mechanisms.
AB - In this paper, a tridimensional acceleration sensor based on flexure parallel mechanism (FPM) is presented. Three perpendicular compliant legs with compact monolithic structure are served as the elastic body for sensing the inertial signals in each direction. With integrated flexure hinges, each chain containing multiple revolute joints and cantilever beams are designed to carry compressive and tensile loads. Firstly, the structure evolution and kinematics modeling are introduced, followed by the multi-spring modeling of the directional compliance for the flexure leg. Then, the comprehensive finite-element analysis (FEA) including the strain of the sensitive legs, modal analysis for total deformation under different frequency is conducted. The compliances calculated by FEA and multi-spring model are compared. Finally, the dimensional optimization is implemented based on multi-population genetic algorithm to obtain the optimal flexure parameters. The proposed methods and algorithms are also useful for the analysis and development of other flexure parallel mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=84863595952&partnerID=8YFLogxK
U2 - 10.1115/DETC2011-48089
DO - 10.1115/DETC2011-48089
M3 - Conference article published in proceeding or book
AN - SCOPUS:84863595952
SN - 9780791854839
T3 - Proceedings of the ASME Design Engineering Technical Conference
SP - 999
EP - 1008
BT - ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2011
T2 - ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2011
Y2 - 28 August 2011 through 31 August 2011
ER -