TY - JOUR
T1 - Computer-assisted ultrasound assessment of plaque characteristics in radiation-induced and non-radiation-induced carotid atherosclerosis
AU - Li, Yuanxi
AU - Kwong, Dora Lai Wan
AU - Wu, Vincent Wing Cheung
AU - Yip, Shea Ping
AU - Law, Helen Ka Wai
AU - Lee, Shara Wee Yee
AU - Ying, Michael Tin Cheung
N1 - Funding Information:
Clinical Oncology, Queen Mary Hospital. Funding: This work was supported by a research studentship (RUAS) and a research grant (P0008624, UAB9) of the Hong Kong Polytechnic University.
Publisher Copyright:
© Quantitative Imaging in Medicine and Surgery. All rights reserved.
PY - 2021/6
Y1 - 2021/6
N2 - Background: This study investigated the feasibility of using a computer-assisted method to evaluate and differentiate the carotid plaque characteristics in radiation-induced and non-radiation-induced carotid atherosclerosis. Methods: This study included 107 post-radiotherapy (post-RT) nasopharyngeal carcinoma (NPC) patients and 110 subjects with cardiovascular risk factors (CVRFs). Each participant had a carotid ultrasound examination, and carotid plaques and carotid intima-media thickness (CIMT) were evaluated with grey scale ultrasound. The carotid plaque characteristics were evaluated for grey-scale median (GSM) and detailed plaque texture analysis (DPTA) using specific computer software. In DPTA, five different intra-plaque components were colour-coded according to different grey scale ranges. A multivariate linear regression model was used to evaluate the correlation of risk factors and carotid plaque characteristics. Results: Post-RT NPC patients have significantly higher CIMT (748±15.1 µm, P=0.001), more patients had a plaque formation (80.4%, P<0.001) and more plaque locations (2.3±0.2, P<0.001) than CVRF subjects (680.4±10.0 µm, 38.2% and 0.5±0.1 respectively). Among the five intra-plaque components, radiation-induced carotid plaques had significantly larger area of calcification (4.8%±7.7%, P=0.012), but lesser area of lipid (42.1%±16.9%, P=0.034) when compared to non-radiation-induced carotid plaques (3.0%±5.7% and 46.3%±17.9% respectively). Age, radiation and number of CVRF were significantly associated with the carotid atherosclerosis burden (P<0.001). Besides, age was significantly associated with the amount of lipid and calcification within carotid plaques (P<0.001). Conclusions: Radiation caused more severe carotid artery disease than CVRF with larger CIMT and more prevalent of carotid plaque. Radiation-induced carotid plaques tended to have more intra-plaque calcifications, whereas non-radiation-induced carotid plaques had more lipids. Ultrasound aided by computer-assisted image analysis has potential for more accurate assessment of carotid atherosclerosis.
AB - Background: This study investigated the feasibility of using a computer-assisted method to evaluate and differentiate the carotid plaque characteristics in radiation-induced and non-radiation-induced carotid atherosclerosis. Methods: This study included 107 post-radiotherapy (post-RT) nasopharyngeal carcinoma (NPC) patients and 110 subjects with cardiovascular risk factors (CVRFs). Each participant had a carotid ultrasound examination, and carotid plaques and carotid intima-media thickness (CIMT) were evaluated with grey scale ultrasound. The carotid plaque characteristics were evaluated for grey-scale median (GSM) and detailed plaque texture analysis (DPTA) using specific computer software. In DPTA, five different intra-plaque components were colour-coded according to different grey scale ranges. A multivariate linear regression model was used to evaluate the correlation of risk factors and carotid plaque characteristics. Results: Post-RT NPC patients have significantly higher CIMT (748±15.1 µm, P=0.001), more patients had a plaque formation (80.4%, P<0.001) and more plaque locations (2.3±0.2, P<0.001) than CVRF subjects (680.4±10.0 µm, 38.2% and 0.5±0.1 respectively). Among the five intra-plaque components, radiation-induced carotid plaques had significantly larger area of calcification (4.8%±7.7%, P=0.012), but lesser area of lipid (42.1%±16.9%, P=0.034) when compared to non-radiation-induced carotid plaques (3.0%±5.7% and 46.3%±17.9% respectively). Age, radiation and number of CVRF were significantly associated with the carotid atherosclerosis burden (P<0.001). Besides, age was significantly associated with the amount of lipid and calcification within carotid plaques (P<0.001). Conclusions: Radiation caused more severe carotid artery disease than CVRF with larger CIMT and more prevalent of carotid plaque. Radiation-induced carotid plaques tended to have more intra-plaque calcifications, whereas non-radiation-induced carotid plaques had more lipids. Ultrasound aided by computer-assisted image analysis has potential for more accurate assessment of carotid atherosclerosis.
KW - Atherosclerotic plaque
KW - Carotid atherosclerosis
KW - Radiation effects
KW - Ultrasound
UR - http://www.scopus.com/inward/record.url?scp=85104578742&partnerID=8YFLogxK
U2 - 10.21037/qims-20-1012
DO - 10.21037/qims-20-1012
M3 - Journal article
AN - SCOPUS:85104578742
SN - 2223-4292
VL - 11
SP - 2292
EP - 2306
JO - Quantitative Imaging in Medicine and Surgery
JF - Quantitative Imaging in Medicine and Surgery
IS - 6
ER -