Abstract
Selective C-H hydroxylation by nonheme iron complexes offers a promising method in the field of organic synthesis. Aliphatic C-H bond oxidation reactions of pivalate (R) catalyzed by [Fe(S,S-PDP)(CH3CN)2]2+(CAT1) were examined using the density functional theory. Our calculations of the CH3CN solvent agree with the experimental findings. However, it was observed that the gas-phase results did not replicate selective C-H hydroxylation observed experimentally when CAT1 catalyzed hydrocarbon oxidations by H2O2via an HO-FeVO oxidant (CAT1a). We inferred that the difference was mainly from hydrogen bonding formation, (CAT1a) O-H⋯OC (R), in certain gaseous H-abstraction transition states (TSH). Then, the appearance of the stronger (CAT1a) O-H⋯NCCH3-solvent weakened the aforementioned interaction, leading to C-H activation influenced primarily by their electronic and steric properties. Such a deduction explained the same selective C-H found in both phases of reactions with CAT1b, a cyclic ferric peracetate oxidant, by the reason of TSHwithout the influence of H-bonding. Another interesting finding was that the commonly recognized radical intermediate was further isomerized by a favorable electron rearrangement. Thus, the subsequent OH-rebound behavior proceeded by an electrostatic interaction. This study provides mechanistic clues for modifying regioselective C-H hydroxylation for molecule synthesis applications.
Original language | English |
---|---|
Pages (from-to) | 13924-13930 |
Number of pages | 7 |
Journal | Physical Chemistry Chemical Physics |
Volume | 19 |
Issue number | 21 |
DOIs | |
Publication status | Published - 1 Jan 2017 |
ASJC Scopus subject areas
- General Physics and Astronomy
- Physical and Theoretical Chemistry