Complex-frequency calculation in acoustics with real-frequency solvers

Shuowei An, Tuo Liu, Jie Zhu, Li Cheng

Research output: Journal article publicationJournal articleAcademic researchpeer-review

Abstract

Complex-frequency calculation enables the characterization of open wave systems in the complex frequency plane as well as the evaluation of wave behaviors under virtual gain and/or loss, which has widespread applications in the investigations of wave scattering and non-Hermitian physics. The corresponding calculation approaches, however, have not been well developed and are usually limited to simple analytical models. Here, we report an efficient numerical method for calculating complex-frequency acoustic wave fields, in which the imaginary part of the frequency is equivalently converted into the variation in material parameters. In this way, the complex-frequency problem becomes a real-frequency one which can then be readily implemented with most existing numerical solvers of the Helmholtz equation. The proposed method is validated by considering two representative examples: the scattering of a one-port lossy acoustic resonator and the imaging of a lossy acoustic superlens under complex frequency excitation. Our work provides a practical and general solution for complex-frequency calculation, in principle, applicable to any complex, dispersive wave systems, which could serve as a powerful tool for fundamental and applied research related to wave scattering and non-Hermiticity.

Original languageEnglish
Article numberL020301
JournalPhysical Review B
Volume111
Issue number2
DOIs
Publication statusPublished - 1 Jan 2025

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Complex-frequency calculation in acoustics with real-frequency solvers'. Together they form a unique fingerprint.

Cite this