Abstract
The interplay of different forms of energies in oxide superlattices, such as elastic, electrostatic, and gradient energies, can result in a stable long-range ordered polar vortex structure at room temperature. However, the role between these energies in determining the vortex structure still remains largely elusive due to the intricate interplay. By using a comprehensive in situ TEM apparatus and a prototype system, PbTiO3/SrTiO3 superlattice, we demonstrate that the vortex structure undergoes a first-order transition at the temperature around 653 K, while the application of in-plane mechanical stress at such a high temperature results in the reemergence of vortex structure. Cryogenic cooling to 94 K raises the stability of vortices, which would be destabilized by loading of out-of-plane mechanical stress. The results can be reproduced and well interpreted by phase-field simulations. These findings not only reveal the competing role of the temperature and mechanical stress at atomic scale but also demonstrate a feasible way to operate the vortex-based nanodevices working in harsh environments.
Original language | English |
---|---|
Article number | 195417 |
Number of pages | 8 |
Journal | Physical Review B |
Volume | 110 |
Issue number | 19 |
DOIs | |
Publication status | Published - 15 Nov 2024 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics