Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: Mechanisms and pathway

Zhe Li, Yuqing Sun, Yang Yang, Yitong Han, Tongshuai Wang, Jiawei Chen, Daniel C.W. Tsang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

60 Citations (Scopus)

Abstract

The selective degradation of recalcitrant antibiotics into byproducts with low toxicity and high biodegradability has been increasingly popular using peroxymonosulfate (PMS) based advanced oxidation processes (AOPs). In this paper, two Fe-based heterogeneous catalysts, bentonite supported Fe–Ni composite (BNF) and biochar-supported Fe composite (Fe/C), were tailored and comprehensively characterized for distinctive physicochemical properties, crystalline structures, and interfacial behaviors. Two widely used antibiotics, sulfapyridine (SPY) and oxytetracycline (OTCs) at their common concentrations in pharmaceutical wastewaters (250 and 10 mg L−1) were tested for degradation in three PMS-based oxidation processes, i.e., PMS, PMS-BNF, and PMS-Fe/C, respectively. Results demonstrated that a large amount of PMS (10 and 1 mM) could effectively remove SPY (0.385 min−1, 100% removal) and OTC (2.737 min−1, 100% removal) via 1O2 derived from PMS self-decomposition and non-radical pathway, respectively. Additional Fe-based catalysts (0.5 g L−1 Fe/C and BNF) significantly reduced the PMS consumption (1 and 0.25 mM) and accelerated the reaction rate (1.08 and 5.05 min−1) of SPY and OTC removal. Moreover, the supplementary catalysts shifted the degradation route. The biochar matrix in Fe/C composite contributed to predominant interaction with PMS forming 1O2, which preferably attacked SPY via hydroxylation. In contrast, the redox-active Fe–Ni pairs induced SO4[rad] formation, which could selectively degrade OTC through decarboxylation. Thus, these results are conducive to tailoring advanced yet low-cost heterogeneous catalysts for eco-friendly treatment of antibiotics-rich industrial wastewaters.

Original languageEnglish
Article number109156
JournalEnvironmental Research
Volume183
DOIs
Publication statusPublished - Apr 2020

Keywords

  • Antibiotics degradation
  • Clay mineral
  • Engineered biochar
  • Fe-carbon composites
  • Peroxymonosulfate oxidation
  • Sustainable wastewater treatment

ASJC Scopus subject areas

  • Biochemistry
  • Environmental Science(all)

Fingerprint

Dive into the research topics of 'Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: Mechanisms and pathway'. Together they form a unique fingerprint.

Cite this