Combined neural network and adaptive dsp training for long-haul optical communications

Research output: Journal article publicationJournal articleAcademic researchpeer-review

10 Citations (Scopus)

Abstract

Machine Learning (ML) algorithms have shown to complement standard digital signal processing (DSP) tools in mitigating fiber nonlinearity and improving long-haul transmission performance. However, dynamic transmission impairments such as polarization effects and carrier phase noise corrupt the training data and conventional cost functions for neural network (NN) training become unsuitable. Simple cascade of ML and standard adaptive DSP blocks will also result in suboptimal transmission performance or require impractical training methodologies in presence of such dynamic transmission impairments. We show how the adaptive DSP blocks can be treated as extra stateful NN layers and be combined with the main NN so that standard backpropagation-like training algorithms in ML can be applied. In this case, the adaptive filters are viewed as NN states which are updated in the forward pass of the backpropagation. We study the combined training of linear and nonlinear parameters in the digital backpropagation (DBP) algorithm for fiber nonlinearity compensation (named generalized DBP (GDBP) hereafter), residual impairments, polarization effects, frequency offsets and carrier phase noise compensation filters as a single NN in a 7 × 288 Gb/s polarization multiplexed (PM)-16QAM transmission experiment over 1125 km. We derived the complete set of backpropagation-like gradients and state update equations for the static and dynamic parameters of the combined NN. We further proposed and open-sourced a JAX-based coding framework for their easy and practical implementation. GDBP is more generalized than other DBP variants proposed in literature and for a given total number of steps, GDBP is the first experimental demonstration of optimal single-channel DBP based-fiber nonlinearity compensation algorithm. In addition, for complexity constrained situations with shortened filter taps, GDBP enables a 1 dB performance improvement over other DBP variants.

Original languageEnglish
Pages (from-to)7083-7091
Number of pages9
JournalJournal of Lightwave Technology
Volume39
Issue number22
DOIs
Publication statusPublished - 15 Nov 2021

Keywords

  • Digital signal processing
  • Fiber nonlinearity
  • Optical communications

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Combined neural network and adaptive dsp training for long-haul optical communications'. Together they form a unique fingerprint.

Cite this