Collision enhanced hyper-damping in nonlinear elastic metamaterial

Miao Yu, Xin Fang, Dianlong Yu, Jihong Wen, Li Cheng

Research output: Journal article publicationJournal articleAcademic researchpeer-review

3 Citations (Scopus)


Nonlinear elastic metamaterial, a topic which has attracted extensive attention in recent years, can enable broadband vibration reduction under relatively large amplitude. The combination of damping and strong nonlinearity in metamaterials may entail extraordinary effects and offer the capability for low-frequency and broadband vibration reduction. However, there exists a clear lack of proper design methods as well as the deficiency in understanding properties arising from this concept. To tackle this problem, this paper numerically demonstrates that the nonlinear elastic metamaterials, consisting of sandwich damping layers and collision resonators, can generate very robust hyper-damping effect, conducive to efficient and broadband vibration suppression. The collision-enhanced hyper damping is persistently presented in a large parameter space, ranging from small to large amplitudes, and for small and large damping coefficients. The achieved robust effects greatly enlarge the application scope of nonlinear metamaterials. We report the design concept, properties and mechanisms of the hyper-damping and its effect on vibration transmission. This paper reveals new properties offered by nonlinear elastic metamaterials, and offers a robust method for achieving efficient low-frequency and broadband vibration suppression.

Original languageEnglish
Article number064303
JournalChinese Physics B
Issue number6
Publication statusPublished - May 2022


  • 43.40.+s
  • hyper-damping
  • nonlinear elastic metamaterial
  • vibration suppression

ASJC Scopus subject areas

  • General Physics and Astronomy


Dive into the research topics of 'Collision enhanced hyper-damping in nonlinear elastic metamaterial'. Together they form a unique fingerprint.

Cite this