Coherent momentum control of forbidden excitons

Xuezhi Ma, Kaushik Kudtarkar, Yixin Chen, Preston Cunha, Yuan Ma, Kenji Watanabe, Takashi Taniguchi, Xiaofeng Qian, M. Cynthia Hipwell, Zi Jing Wong, Shoufeng Lan

Research output: Journal article publicationJournal articleAcademic researchpeer-review

14 Citations (Scopus)

Abstract

A double-edged sword in two-dimensional material science and technology is optically forbidden dark exciton. On the one hand, it is fascinating for condensed matter physics, quantum information processing, and optoelectronics due to its long lifetime. On the other hand, it is notorious for being optically inaccessible from both excitation and detection standpoints. Here, we provide an efficient and low-loss solution to the dilemma by reintroducing photonics bound states in the continuum (BICs) to manipulate dark excitons in the momentum space. In a monolayer tungsten diselenide under normal incidence, we demonstrated a giant enhancement (~1400) for dark excitons enabled by transverse magnetic BICs with intrinsic out-of-plane electric fields. By further employing widely tunable Friedrich-Wintgen BICs, we demonstrated highly directional emission from the dark excitons with a divergence angle of merely 7°. We found that the directional emission is coherent at room temperature, unambiguously shown in polarization analyses and interference measurements. Therefore, the BICs reintroduced as a momentum-space photonic environment could be an intriguing platform to reshape and redefine light-matter interactions in nearby quantum materials, such as low-dimensional materials, otherwise challenging or even impossible to achieve.

Original languageEnglish
Article number6916
JournalNature Communications
Volume13
Issue number1
DOIs
Publication statusPublished - Dec 2022

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Coherent momentum control of forbidden excitons'. Together they form a unique fingerprint.

Cite this