Abstract
Designing well-defined nanointerfaces is of prime importance to enhance the activity of nanoelectrocatalysts for different catalytic reactions. However, studies on non-noble-metal-interface electrocatalysts with extremely high activity and superior stability at high current density still remains a great challenge. Herein, a class of Co 3 O 4 /Fe 0.33 Co 0.66 P interface nanowires is rationally designed for boosting oxygen evolution reaction (OER) catalysis at high current density by partial chemical etching of Co(CO 3 ) 0.5 (OH)·0.11H 2 O (Co-CHH) nanowires with Fe(CN) 6 3− , followed by low-temperature phosphorization treatment. The resulting Co 3 O 4 /Fe 0.33 Co 0.66 P interface nanowires exhibit very high OER catalytic performance with an overpotential of only 215 mV at a current density of 50 mA cm −2 and a Tafel slope of 59.8 mV dec −1 in 1.0 m KOH. In particular, Co 3 O 4 /Fe 0.33 Co 0.66 P exhibits an obvious advantage in enhancing oxygen evolution at high current density by showing an overpotential of merely 291 mV at 800 mA cm −2 , much lower than that of RuO 2 (446 mV). Co 3 O 4 /Fe 0.33 Co 0.66 P is remarkably stable for the OER with negligible current loss under overpotentials of 200 and 240 mV for 150 h. Theoretical calculations reveal that Co 3 O 4 /Fe 0.33 Co 0.66 P is more favorable for the OER since the electrochemical catalytic oxygen evolution barrier is optimally lowered by the active Co- and O-sites from the Co 3 O 4 /Fe 0.33 Co 0.66 P interface.
Original language | English |
---|---|
Article number | 1803551 |
Journal | Advanced Materials |
Volume | 30 |
Issue number | 45 |
DOIs | |
Publication status | Published - 8 Nov 2018 |
Keywords
- electrocatalysis
- nanowires
- oxygen evolution reaction
- semimetallic interfaces
ASJC Scopus subject areas
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering