Abstract
Lymphopenia and increasing viral load in the first 10 days of severe acute respiratory syndrome (SARS) suggested immune evasion by SARS-coronavirus (CoV). In this study, we focused on dendritic cells (DCs) which play important roles in linking the innate and adaptive immunity. SARS-CoV was shown to infect both immature and mature human monocyte-derived DCs by electron microscopy and immunofluorescence. The detection of negative strands of SARS-CoV RNA in DCs suggested viral replication. However, no increase in viral RNA was observed. Using cytopathic assays, no increase in virus titer was detected in infected DCs and cell-culture supernatant, confirming that virus replication was incomplete. No induction of apoptosis or maturation was detected in SARS-CoV-infected DCs. The SARS-CoV-infected DCs showed low expression of antiviral cytokines (interferon α [IFN-α], IFN-β, IFN-γ, and interleukin 12p40 [IL-12p40]), moderate up-regulation of proinflammatory cytokines (tumor necrosis factor α [TNF-α] and IL-6) but significant up-regulation of inflammatory chemokines (macrophage inflammatory protein 1α [MIP-1α], regulated on activation normal T cell expressed and secreted [RANTES]), interferon-inducible protein of 10 kDa [IP-10], and monocyte chemoattractant protein 1 [MCP-1]). The lack of antiviral cytokine response against a background of intense chemokine upregulation could represent a mechanism of immune evasion by SARS-CoV.
Original language | English |
---|---|
Pages (from-to) | 2366-2374 |
Number of pages | 9 |
Journal | Blood |
Volume | 106 |
Issue number | 7 |
DOIs | |
Publication status | Published - 1 Oct 2005 |
ASJC Scopus subject areas
- Immunology
- Biochemistry
- Hematology
- Cell Biology