Charged dinuclear Cu(I) complexes for solution-processed single-emitter warm white organic light-emitting devices

Xiaolong Yang, Xiaogang Yan, Haoran Guo, Boao Liu, Jiang Zhao, Guijiang Zhou, Yong Wu, Zhaoxin Wu, Wai Yeung Wong

Research output: Journal article publicationJournal articleAcademic researchpeer-review

22 Citations (Scopus)

Abstract

The chemical modification of the ligands can effectively affect the absorption, emission and thermal stability properties of the Cu(I) complexes. The decomposition temperatures (Td) are improved by using bulky ligands. Interestingly, the complexes with the triphenylamine group on the bipyrimidine ligand show higher photoluminescence quantum yield (PLQY) than the complexes bearing the triphenylphosphine oxide group, while the complexes having the triphenylamine group on the phosphine ligand display lower PLQY. The functional groups also show an obvious influence on the redox behaviors of these complexes. Most importantly, the organic light-emitting diodes (OLEDs) based on selected dinuclear Cu(I) complexes show impressive EL features. The best performance is achieved by the device based on complex Cu-MD-1 with the maximum external quantum efficiency (EQE) of 6.09%, current efficiency (CE) of 12.78 cd A−1and power efficiency (PE) of 5.93 lm W−1, representing the state-of-the-art EL efficiencies reported for the charged Cu(I) complexes. In addition, the OLEDs based on these Cu(I) complexes can emit warm white light with Color Rendering Index (CRI) as high as 88 and Commission Internationale Ed I'eclairage (CIE) coordinates close to (0.40, 0.46), showing the great potential of these Cu(I) complexes in fabricating single-emitter warm WOLEDs.
Original languageEnglish
Pages (from-to)151-164
Number of pages14
JournalDyes and Pigments
Volume143
DOIs
Publication statusPublished - 1 Aug 2017

Keywords

  • Dinuclear Cu(I) complex
  • OLED
  • Photoluminescence
  • Single-emitter

ASJC Scopus subject areas

  • General Chemical Engineering
  • Process Chemistry and Technology

Fingerprint

Dive into the research topics of 'Charged dinuclear Cu(I) complexes for solution-processed single-emitter warm white organic light-emitting devices'. Together they form a unique fingerprint.

Cite this