Abstract
Fundamental shear horizontal (SH0) waves in plate-like structures are of great importance in structural health monitoring (SHM) applications due to its unique nondispersive nature. The generation and the reception of the SH0 waves using piezoelectrics, however, is always a challenge. In this study, a dynamic model on the shear horizontal (SH) wave generation is proposed based on the continuum mechanics theory, in which the full dynamic coupling between a PZT actuator and a plate is considered. The inevitable unideal bonding between the actuator and the plate is taken into account through a spring model. The solutions, which can simultaneously satisfy the governing dynamic equations and the boundary conditions, are obtained in a closed form using trigonometric series and modal superposition method. The convergence of the series is demonstrated and the model is numerically validated through comparisons with FEM results using a PZT-5H wafer bonded on the surface of a thin aluminum plate. The proposed model is general, suitable for both ideal and unideal bonding, and expected to provide a useful tool for analyzing and simulating SH0 wave generations in SHM applications.
Original language | English |
---|---|
Title of host publication | Structural Health Monitoring 2017 |
Subtitle of host publication | Real-Time Material State Awareness and Data-Driven Safety Assurance - Proceedings of the 11th International Workshop on Structural Health Monitoring, IWSHM 2017 |
Publisher | DEStech Publications |
Pages | 563-570 |
Number of pages | 8 |
Volume | 1 |
ISBN (Electronic) | 9781605953304 |
Publication status | Published - 1 Jan 2017 |
Event | 11th International Workshop on Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance, IWSHM 2017 - Stanford University, Stanford, United States Duration: 12 Sept 2017 → 14 Sept 2017 |
Conference
Conference | 11th International Workshop on Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance, IWSHM 2017 |
---|---|
Country/Territory | United States |
City | Stanford |
Period | 12/09/17 → 14/09/17 |
ASJC Scopus subject areas
- Health Information Management
- Computer Science Applications