Abstract
In the present study, we aim to elucidate the role of caveolin-1 (Cav-1) in modulating oligodendroglial differentiation of neural progenitor cells (NPCs) in vivo and in vitro. For in vivo experiments, we investigated oligodendroglial differentiation by detecting the expressions of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) and β-catenin in the brains of wild type mice and Cav-1 knockout mice. Cav-1 knockout mice revealed more oligodendroglial differentiation, but lower levels of β-catenin expression than wild type mice. For in vitro experiments, we observed the potential roles of Cav-1 in modulating β-catenin expression and oligodendroglial differentiation in isolated cultured NPCs by manipulating Cav-1 expression with Cav-1 scaffolding domain peptide and Cav-1 RNA silencing approach. In the differentiating NPCs, Cav-1 scaffolding domain peptide markedly inhibited oligodendroglial formation, but up-regulated the expression of β-catenin. In contrast, the knockdown of Cav-1 promoted oligodendroglial differentiation of NPCs, but down-regulated the expression of β-catenin. Taken together, these results directly prove that caveolin-1 can inhibit oligodendroglial differentiation of NPCs through modulating β-catenin expression.
Original language | English |
---|---|
Pages (from-to) | 114-121 |
Number of pages | 8 |
Journal | Neurochemistry International |
Volume | 59 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Aug 2011 |
Externally published | Yes |
Keywords
- β-Catenin
- Caveolin-1
- Neural progenitor cells
- Oligodendrocytes
ASJC Scopus subject areas
- Cellular and Molecular Neuroscience
- Cell Biology