TY - GEN
T1 - Causal Analysis on the Anchor Store Effect in a Location-based Social Network
AU - Vallapuram, Anish K.
AU - Kwon, Young D.
AU - Lee, Lik Hang
AU - Xu, Fengli
AU - Hui, Pan
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022/11
Y1 - 2022/11
N2 - A particular phenomenon of interest in Retail Eco-nomics is the spillover effect of anchor stores (specific stores with a reputable brand) to non-anchor stores in terms of customer traffic. Prior works in this area rely on small and survey-based datasets that are often confidential or expensive to collect on a large scale. Also, very few works study the underlying causal mechanisms between factors that underpin the spillover effect. In this work, we analyze the causal relationship between anchor stores and customer traffic to non-anchor stores and employ a propensity score matching framework to investigate this effect more efficiently. First of all, to demonstrate the effect, we leverage open and mobile data from London Datastore and Location-Based Social Networks (LBSNs) such as Foursquare. We then perform a large-scale empirical analysis of customer visit patterns from anchor stores to non-anchor stores (e.g., non-chain restaurants) located in the Greater London area as a case study. By studying over 600 neighbourhoods in the Greater London area, we find that anchor stores cause a 14.2-26.5% increase in customer traffic for the non-anchor stores reinforcing the established economic theory Moreover, we evaluate the efficiency of our methodology by studying the confounder balance, dose difference and performance of the matching framework on synthetic data. Through this work, we point decision-makers in the retail industry to a more systematic approach to estimate the anchor store effect and pave the way for further research to discover more complex causal relationships underlying this effect with open data.
AB - A particular phenomenon of interest in Retail Eco-nomics is the spillover effect of anchor stores (specific stores with a reputable brand) to non-anchor stores in terms of customer traffic. Prior works in this area rely on small and survey-based datasets that are often confidential or expensive to collect on a large scale. Also, very few works study the underlying causal mechanisms between factors that underpin the spillover effect. In this work, we analyze the causal relationship between anchor stores and customer traffic to non-anchor stores and employ a propensity score matching framework to investigate this effect more efficiently. First of all, to demonstrate the effect, we leverage open and mobile data from London Datastore and Location-Based Social Networks (LBSNs) such as Foursquare. We then perform a large-scale empirical analysis of customer visit patterns from anchor stores to non-anchor stores (e.g., non-chain restaurants) located in the Greater London area as a case study. By studying over 600 neighbourhoods in the Greater London area, we find that anchor stores cause a 14.2-26.5% increase in customer traffic for the non-anchor stores reinforcing the established economic theory Moreover, we evaluate the efficiency of our methodology by studying the confounder balance, dose difference and performance of the matching framework on synthetic data. Through this work, we point decision-makers in the retail industry to a more systematic approach to estimate the anchor store effect and pave the way for further research to discover more complex causal relationships underlying this effect with open data.
UR - http://www.scopus.com/inward/record.url?scp=85152022995&partnerID=8YFLogxK
U2 - 10.1109/ASONAM55673.2022.10068687
DO - 10.1109/ASONAM55673.2022.10068687
M3 - Conference article published in proceeding or book
AN - SCOPUS:85152022995
T3 - Proceedings of the 2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2022
SP - 202
EP - 209
BT - Proceedings of the 2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2022
A2 - An, Jisun
A2 - Charalampos, Chelmis
A2 - Magdy, Walid
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 14th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2022
Y2 - 10 November 2022 through 13 November 2022
ER -