Cascading Failure Model Considering Multi-Step Attack Strategy

Hengdao Guo, Herbert Ho Ching Iu, Tyrone Fernando, Ciyan Zheng, Xi Zhang, Chi K. Tse

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

Abstract

Modeling and analysis of cascading failures draws wide attention recently due to frequent occurrences of large blackouts all over the world. Models based on complex network theory contribute significantly on analyzing the robustness of power systems and assessing the risk probability, while they fall short of producing the propagation of the cascading failure in exact time points. This paper presents an improved topological model taking timescale into consideration, as well as the relay setting which reveals its operation more accurately according to industrial standards. The paper then validates the model using UIUC 150-bus and IEEE 39-bus test system. In order to assess the vulnerability of a power network, the multi-step attack strategy has been provided. The results demonstrate that timescales and relay settings have a critical impact during the cascading failure and the proposed attack strategy may lead to larger blackouts than normal strategies.

Original languageEnglish
Title of host publication2018 IEEE International Symposium on Circuits and Systems, ISCAS 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538648810
DOIs
Publication statusPublished - 26 Apr 2018
Event2018 IEEE International Symposium on Circuits and Systems, ISCAS 2018 - Florence, Italy
Duration: 27 May 201830 May 2018

Publication series

NameProceedings - IEEE International Symposium on Circuits and Systems
Volume2018-May
ISSN (Print)0271-4310

Conference

Conference2018 IEEE International Symposium on Circuits and Systems, ISCAS 2018
Country/TerritoryItaly
CityFlorence
Period27/05/1830/05/18

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Cite this