C-logit stochastic user equilibrium model with elastic demand

Xiangdong Xu, Anthony Chen

Research output: Journal article publicationJournal articleAcademic researchpeer-review

13 Citations (Scopus)

Abstract

Modeling the elasticity of travel demand in network equilibrium analysis has several important transportation applications. In this paper, we provide a mathematical programming formulation for the C-logit stochastic user equilibrium problem with elastic demand (CL-SUE-ED) in the route domain. The proposed model is capable of explicitly modeling the elasticity of travel demand and the effect of route overlapping on travel choice and route choice simultaneously. Some qualitative properties of the model, including the equivalency and uniqueness of the solution, are also rigorously proved. To solve the CL-SUE-ED model, a partial linearization method is developed to handle the elastic demand and route overlapping considerations. In addition, a self-regulated averaging stepsize scheme is adopted to smartly determine the stepsize while avoiding evaluating the complex objective function. Numerical examples are also provided to demonstrate the features of the proposed model and solution algorithm.
Original languageEnglish
Pages (from-to)463-478
Number of pages16
JournalTransportation Planning and Technology
Volume36
Issue number5
DOIs
Publication statusPublished - 1 Jul 2013
Externally publishedYes

Keywords

  • C-logit
  • elastic demand
  • partial linearization
  • stochastic user equilibrium

ASJC Scopus subject areas

  • Geography, Planning and Development
  • Transportation

Cite this