Abstract
Chromatic dispersion (CD) is always an obstacle to C-band high-speed intensity modulation and direct detection (IM/DD) transmissions, especially with a fiber reach of > 20 km. To reach beyond net-100-Gb/s IM/DD transmission over 50-km standard single mode fiber (SSMF), we for the first time present a CD-aware probabilistically shaped four-ary pulse amplitude modulation (PS-PAM-4) signal transmission scheme with a FIR-filter-based pre-electronic dispersion compensation (FIR-EDC) for C-band IM/DD transmission system. With the help of the FIR-EDC at the transmitter, 100-GBaud PS-PAM-4 signal transmission at 150-Gb/s line rate and 115.2-Gb/s net rate over 50-km SSMF is realized with only feed-forward equalization (FFE) at the receiver side. The superiority of the CD-aware PS-PAM-4 signal transmission scheme over other benchmark schemes has been successfully verified by experiments. Experimental results show that 24.5% improvement of system capacity is obtained by the FIR-EDC-based PS-PAM-4 signal transmission scheme in comparison to the FIR-EDC-based on-off keying (OOK) signal transmission scheme. Compared with the FIR-EDC-based uniform PAM-4 signal transmission scheme or the PS-PAM-4 signal transmission scheme without EDC, the capacity improvement obtained by the FIR-EDC-based PS-PAM-4 signal transmission scheme becomes more profound. The results show the potential and feasibility of such CD-aware PS-PAM-4 signal transmission scheme applied in CD-constrained IM/DD datacenter interconnects.
Original language | English |
---|---|
Article number | 10944087 |
Pages (from-to) | 17759-17768 |
Number of pages | 10 |
Journal | Optics Express |
Volume | 31 |
Issue number | 11 |
DOIs | |
Publication status | Published - 22 May 2023 |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics