Building reliable radiomic models using image perturbation

Xinzhi Teng, Jiang Zhang, Alex Zwanenburg, Jiachen Sun, Yuhua Huang, Saikit Lam, Yuanpeng Zhang, Bing Li, Ta Zhou, Haonan Xiao, Chenyang Liu, Wen Li, Xinyang Han, Zongrui Ma, Tian Li, Jing Cai

Research output: Journal article publicationJournal articleAcademic researchpeer-review

23 Citations (Scopus)

Abstract

Radiomic model reliability is a central premise for its clinical translation. Presently, it is assessed using test–retest or external data, which, unfortunately, is often scarce in reality. Therefore, we aimed to develop a novel image perturbation-based method (IPBM) for the first of its kind toward building a reliable radiomic model. We first developed a radiomic prognostic model for head-and-neck cancer patients on a training (70%) and evaluated on a testing (30%) cohort using C-index. Subsequently, we applied the IPBM to CT images of both cohorts (Perturbed-Train and Perturbed-Test cohort) to generate 60 additional samples for both cohorts. Model reliability was assessed using intra-class correlation coefficient (ICC) to quantify consistency of the C-index among the 60 samples in the Perturbed-Train and Perturbed-Test cohorts. Besides, we re-trained the radiomic model using reliable RFs exclusively (ICC > 0.75) to validate the IPBM. Results showed moderate model reliability in Perturbed-Train (ICC: 0.565, 95%CI 0.518–0.615) and Perturbed-Test (ICC: 0.596, 95%CI 0.527–0.670) cohorts. An enhanced reliability of the re-trained model was observed in Perturbed-Train (ICC: 0.782, 95%CI 0.759–0.815) and Perturbed-Test (ICC: 0.825, 95%CI 0.782–0.867) cohorts, indicating validity of the IPBM. To conclude, we demonstrated capability of the IPBM toward building reliable radiomic models, providing community with a novel model reliability assessment strategy prior to prospective evaluation.

Original languageEnglish
Article number10035
JournalScientific Reports
Volume12
Issue number1
DOIs
Publication statusPublished - Dec 2022

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Building reliable radiomic models using image perturbation'. Together they form a unique fingerprint.

Cite this