Breakdown of the skeletal stress technique for lifetime prediction of notched tension bars due to creep crack growth

D. R. Hayhurst, B. F. Dyson, J. Lin

Research output: Journal article publicationJournal articleAcademic researchpeer-review

24 Citations (Scopus)

Abstract

The paper defines the range of applicability of the skeletal stress technique as a means of predicting the creep lifetime of a circumferentially notched tension bar subjected to steady load. The skeletal stress approach involves the quantification of the effective stress Σc and its ratio with the maximum principal tension stress Σl at a point, known as the skeletal point, at the throat of the notch. The stress Σc and stress state Σle at the skeletal point are assumed to remain constant and to determine the notched bar lifetime, which is determined by direct integration of the constitutive equations. This paper assesses the range of validity of this technique using Continuum Damage Mechanics (CDM) calculations, based on finite element analysis techniques, to predict the exact notch behaviour for a range of material conditions appropriate to nickel superalloys. It has been shown that by reducing the ductility parameter in the constitutive equations associated with the creep constrained cavitation damage variable ω2, the CDM computations are capable of predicting two extreme types of behaviour. Firstly, widespread CDM behaviour, and secondly CDM growth on a highly localised-planar scale which models the phenomenon of Creep Crack Growth (CCG). The reference stress method is shown to be appropriate for widespread CDM behaviour, and to progressively become valid as the material ductility is reduced. This trend is accompanied by a shift from modest notch weakening to severe notch weakening. It is also shown that the stress level applied to the bar, and the strength of the dislocation softening damage mechanism, denoted by a second damage variable ω1, also influences the above behaviour. The paper defines bounds of applicability for the skeletal stress approach to lifetime prediction, and recommends the use of complete CDM finite clement analysis for those situations where breakdown occurs.

Original languageEnglish
Pages (from-to)711-726
Number of pages16
JournalEngineering Fracture Mechanics
Volume49
Issue number5
DOIs
Publication statusPublished - Nov 1994
Externally publishedYes

ASJC Scopus subject areas

  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Breakdown of the skeletal stress technique for lifetime prediction of notched tension bars due to creep crack growth'. Together they form a unique fingerprint.

Cite this