TY - GEN
T1 - Boundary-aware feature propagation for scene segmentation
AU - DIng, Henghui
AU - Jiang, Xudong
AU - Liu, Ai Qun
AU - Thalmann, Nadia Magnenat
AU - Wang, Gang
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/10
Y1 - 2019/10
N2 - In this work, we address the challenging issue of scene segmentation. To increase the feature similarity of the same object while keeping the feature discrimination of different objects, we explore to propagate information throughout the image under the control of objects' boundaries. To this end, we first propose to learn the boundary as an additional semantic class to enable the network to be aware of the boundary layout. Then, we propose unidirectional acyclic graphs (UAGs) to model the function of undirected cyclic graphs (UCGs), which structurize the image via building graphic pixel-by-pixel connections, in an efficient and effective way. Furthermore, we propose a boundary-aware feature propagation (BFP) module to harvest and propagate the local features within their regions isolated by the learned boundaries in the UAG-structured image. The proposed BFP is capable of splitting the feature propagation into a set of semantic groups via building strong connections among the same segment region but weak connections between different segment regions. Without bells and whistles, our approach achieves new state-of-the-art segmentation performance on three challenging semantic segmentation datasets, i.e., PASCAL-Context, CamVid, and Cityscapes.
AB - In this work, we address the challenging issue of scene segmentation. To increase the feature similarity of the same object while keeping the feature discrimination of different objects, we explore to propagate information throughout the image under the control of objects' boundaries. To this end, we first propose to learn the boundary as an additional semantic class to enable the network to be aware of the boundary layout. Then, we propose unidirectional acyclic graphs (UAGs) to model the function of undirected cyclic graphs (UCGs), which structurize the image via building graphic pixel-by-pixel connections, in an efficient and effective way. Furthermore, we propose a boundary-aware feature propagation (BFP) module to harvest and propagate the local features within their regions isolated by the learned boundaries in the UAG-structured image. The proposed BFP is capable of splitting the feature propagation into a set of semantic groups via building strong connections among the same segment region but weak connections between different segment regions. Without bells and whistles, our approach achieves new state-of-the-art segmentation performance on three challenging semantic segmentation datasets, i.e., PASCAL-Context, CamVid, and Cityscapes.
UR - http://www.scopus.com/inward/record.url?scp=85079693647&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2019.00692
DO - 10.1109/ICCV.2019.00692
M3 - Conference article published in proceeding or book
AN - SCOPUS:85079693647
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 6818
EP - 6828
BT - Proceedings - 2019 International Conference on Computer Vision, ICCV 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
Y2 - 27 October 2019 through 2 November 2019
ER -