TY - JOUR
T1 - Bone Geometry, Density, Microstructure, and Biomechanical Properties in the Distal Tibia in Patients With Primary Hypertrophic Osteoarthropathy Assessed by Second-Generation High-Resolution Peripheral Quantitative Computed Tomography
AU - Pang, Qianqian
AU - Xu, Yuping
AU - Huang, Le
AU - Li, Ye
AU - Lin, Yuanyuan
AU - Hou, Yanfang
AU - Hung, Vivian W.
AU - Qi, Xuan
AU - Ni, Xiaolin
AU - Li, Mei
AU - Jiang, Yan
AU - Wang, Ou
AU - Xing, Xiaoping
AU - Qin, Ling
AU - Xia, Weibo
N1 - Publisher Copyright:
© 2021 American Society for Bone and Mineral Research (ASBMR).
PY - 2022/3
Y1 - 2022/3
N2 - Periosteosis refers to pathological woven bone formation beneath the cortical bone of the long bones. It is an imaging hallmark of primary hypertrophic osteoarthropathy (PHO) and also considered as one of the major diagnostic criteria of PHO patients. Up to date, detailed information on bone quality changes in long bones of PHO patients is still missing. This study aimed to evaluate bone microarchitecture and bone strength in PHO patients by using high-resolution peripheral quantitative computed tomography (HR-pQCT). The study comprised 20 male PHO patients with the average age of 27.0 years and 20 age- and sex-matched healthy controls. The areal bone mineral density (aBMD) was assessed at the lumbar spine (L1–L4) and hip (total hip and femoral neck) by dual-energy X-ray absorptiometry (DXA). Bone geometry, volumetric bone mineral density (vBMD), and microstructure parameters at the distal tibia were evaluated by using HR-pQCT. Bone strength was evaluated by finite element analysis (FEA) based on HR-pQCT screening at distal tibia. Urinary prostaglandin E2 (PGE2), serum phosphatase (ALP), beta-C-telopeptides of type I collagen (β-CTX), soluble receptor activator of nuclear factor-κB ligand (sRANKL), osteoprotegerin (OPG), and neuronal calcitonin gene-related peptide (CGRP) were investigated. As compared with healthy controls, PHO patients had larger bone cross-sectional areas; lower total, trabecular, and cortical vBMD; compromised bone microstructures with more porous cortices, thinned trabeculae, reduced trabecular connectivity, and relatively more significant resorption of rod-like trabeculae at distal tibia. The apparent Young's modulus was significantly lower in PHO patients. The concentration of PGE2, biomarkers of bone resorption (β-CTX and sRANKL/OPG ratio), and the neuropeptide CGRP were higher in PHO patients versus healthy controls. PGE2 level correlated negatively with vBMD and estimated bone strength and positively with bone geometry at distal tibia. The present HR-pQCT study is the first one illustrating the microarchitecture and bone strength features in long bones.
AB - Periosteosis refers to pathological woven bone formation beneath the cortical bone of the long bones. It is an imaging hallmark of primary hypertrophic osteoarthropathy (PHO) and also considered as one of the major diagnostic criteria of PHO patients. Up to date, detailed information on bone quality changes in long bones of PHO patients is still missing. This study aimed to evaluate bone microarchitecture and bone strength in PHO patients by using high-resolution peripheral quantitative computed tomography (HR-pQCT). The study comprised 20 male PHO patients with the average age of 27.0 years and 20 age- and sex-matched healthy controls. The areal bone mineral density (aBMD) was assessed at the lumbar spine (L1–L4) and hip (total hip and femoral neck) by dual-energy X-ray absorptiometry (DXA). Bone geometry, volumetric bone mineral density (vBMD), and microstructure parameters at the distal tibia were evaluated by using HR-pQCT. Bone strength was evaluated by finite element analysis (FEA) based on HR-pQCT screening at distal tibia. Urinary prostaglandin E2 (PGE2), serum phosphatase (ALP), beta-C-telopeptides of type I collagen (β-CTX), soluble receptor activator of nuclear factor-κB ligand (sRANKL), osteoprotegerin (OPG), and neuronal calcitonin gene-related peptide (CGRP) were investigated. As compared with healthy controls, PHO patients had larger bone cross-sectional areas; lower total, trabecular, and cortical vBMD; compromised bone microstructures with more porous cortices, thinned trabeculae, reduced trabecular connectivity, and relatively more significant resorption of rod-like trabeculae at distal tibia. The apparent Young's modulus was significantly lower in PHO patients. The concentration of PGE2, biomarkers of bone resorption (β-CTX and sRANKL/OPG ratio), and the neuropeptide CGRP were higher in PHO patients versus healthy controls. PGE2 level correlated negatively with vBMD and estimated bone strength and positively with bone geometry at distal tibia. The present HR-pQCT study is the first one illustrating the microarchitecture and bone strength features in long bones.
KW - aBMD
KW - CGRP
KW - HR-pQCT
KW - PRIMARY HYPERTROPHIC OSTEOARTHROPATHY
KW - PROSTAGLANDIN E2
UR - http://www.scopus.com/inward/record.url?scp=85122158953&partnerID=8YFLogxK
U2 - 10.1002/jbmr.4488
DO - 10.1002/jbmr.4488
M3 - Journal article
C2 - 34894003
AN - SCOPUS:85122158953
SN - 0884-0431
VL - 37
SP - 484
EP - 493
JO - Journal of Bone and Mineral Research
JF - Journal of Bone and Mineral Research
IS - 3
ER -