Bond and flexural performance of basalt fiber–reinforced polymer bar–reinforced seawater sea sand glass aggregate concrete beams

Zhiqiang Dong, Gang Wu, Hong Zhu, Yang Wei, Xiao Ling Zhao, Xinxing Shao

Research output: Journal article publicationJournal articleAcademic researchpeer-review

11 Citations (Scopus)

Abstract

This article proposes a new type of basalt fiber–reinforced polymer (BFRP) bar–reinforced seawater sea sand glass aggregate concrete (SSGC) beam with broad application prospects in ocean engineering. Crushed tempered glasses were utilized as coarse aggregates in the concrete mixture to realize the efficient and harmless recycling of waste glass. First, the bond behaviors between the BFRP bars and SSGC with different glass aggregate replacement ratios were investigated. Then, four-point bending tests were conducted to investigate the flexural performance of the SSGC beams completely reinforced with BFRP bars. Based on this, the tested flexural strengths were compared with the calculated strengths to evaluate whether the existing specifications were still applicable to the design of the BFRP bar–reinforced SSGC beams. Test results showed that although the compressive strength of the SSGC gradually decreased with increased glass aggregate content, the bond performance between BFRP bars and SSGC did not follow the same degradation pattern. There were no obvious differences in the form of the bond–slip curves between BFRP bars and different types of SSGC. With increasing glass aggregate content, the ultimate bearing capacity and energy consumption of BFRP bar–reinforced SSGC beams decreased. All calculated ultimate flexural capacities were higher than the experimental values, which shows that the application of existing specifications to BFRP bar–reinforced SSGC beams needs to be studied further.

Original languageEnglish
Pages (from-to)3359-3374
Number of pages16
JournalAdvances in Structural Engineering
Volume24
Issue number15
DOIs
Publication statusPublished - Nov 2021
Externally publishedYes

Keywords

  • basalt fiber–reinforced polymer bars
  • bond performance
  • compression strength
  • flexural performance
  • seawater sea sand glass aggregate concrete

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Building and Construction

Fingerprint

Dive into the research topics of 'Bond and flexural performance of basalt fiber–reinforced polymer bar–reinforced seawater sea sand glass aggregate concrete beams'. Together they form a unique fingerprint.

Cite this