TY - JOUR
T1 - Beyond the heteroepitaxial quantum dot: Self-assembling complex nanostructures controlled by strain and growth kinetics
AU - Gray, J. L.
AU - Hull, R.
AU - Lam, Chi Hang
AU - Sutter, P.
AU - Means, J.
AU - Floro, J. A.
PY - 2005/10/15
Y1 - 2005/10/15
N2 - Heteroepitaxial growth of GeSi alloys on Si (001) under deposition conditions that partially limit surface mobility leads to an unusual form of strain-induced surface morphological evolution. We discuss a kinetic growth regime wherein pits form in a thick metastable wetting layer and, with additional deposition, evolve to a quantum dot molecule-a symmetric assembly of four quantum dots bound by the central pit. We discuss the size selection and scaling of quantum dot molecules. We then examine the key mechanism-preferred pit formation-in detail, using ex situ atomic force microscopy, in situ scanning tunneling microscopy, and kinetic Monte Carlo simulations. A picture emerges wherein localized pits appear to arise from a damped instability. When pits are annealed, they extend into an array of highly anisotropic surface grooves via a one-dimensional growth instability. Subsequent deposition on this grooved film results in a fascinating structure where compact quantum dots and molecules, as well as highly ramified quantum wires, are all simultaneously self-assembled.
AB - Heteroepitaxial growth of GeSi alloys on Si (001) under deposition conditions that partially limit surface mobility leads to an unusual form of strain-induced surface morphological evolution. We discuss a kinetic growth regime wherein pits form in a thick metastable wetting layer and, with additional deposition, evolve to a quantum dot molecule-a symmetric assembly of four quantum dots bound by the central pit. We discuss the size selection and scaling of quantum dot molecules. We then examine the key mechanism-preferred pit formation-in detail, using ex situ atomic force microscopy, in situ scanning tunneling microscopy, and kinetic Monte Carlo simulations. A picture emerges wherein localized pits appear to arise from a damped instability. When pits are annealed, they extend into an array of highly anisotropic surface grooves via a one-dimensional growth instability. Subsequent deposition on this grooved film results in a fascinating structure where compact quantum dots and molecules, as well as highly ramified quantum wires, are all simultaneously self-assembled.
UR - http://www.scopus.com/inward/record.url?scp=29644444789&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.72.155323
DO - 10.1103/PhysRevB.72.155323
M3 - Journal article
SN - 1098-0121
VL - 72
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 15
M1 - 155323
ER -