Bayesian updates for indoor thermal comfort models

K. W. Mui, T. W. Tsang, L. T. Wong

Research output: Journal article publicationJournal articleAcademic researchpeer-review

6 Citations (Scopus)

Abstract

Achieving thermal comfort through sustainable indoor design is an increasing concern. Thermal comfort modelling is crucial for achieving building energy saving. This study reviews and categorizes major developments and trends in the field of thermal comfort research in recent years. Discrepancies between actual and predicted results of thermal sensation and thermal satisfaction suggests a performance gap in Fanger's model. Based on the current research gaps identified, a practical solution is proposed to improve the reliability of thermal comfort predictions. Two Bayesian updating protocols, namely individual updating and global updating, are put forward and the use of Bayesian approach to systemically update current thermal comfort beliefs with openly available field data is demonstrated. Besides being a practical tool for modelling thermal comfort using the best information available (i.e. existing models and field survey data), the proposed Bayesian updating provides an achievable solution to the present challenges in establishing a reliable thermal comfort prediction model.

Original languageEnglish
Article number101117
JournalJournal of Building Engineering
Volume29
DOIs
Publication statusPublished - May 2020

Keywords

  • Acceptance
  • Bayesian updating
  • Prediction
  • Thermal comfort

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Architecture
  • Building and Construction
  • Safety, Risk, Reliability and Quality
  • Mechanics of Materials

Cite this